Klasifikasi Timun Segar dan Busuk Menggunakan K-Means Clustering dengan Peningkatan Noise Reduction dan Median Filter

Rahmah Dila(1*), Riyan Saputra(2), Agung Ramadhanu(3),

(1) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(2) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(3) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(*) Corresponding Author

Abstract


Cucumber is one of the agricultural commodities that is vulnerable to quality degradation due to the rotting process. Manual classification of fresh and rotten cucumbers can be time-consuming and inconsistent, thus requiring a more efficient automated method. The main objective of this research is to implement an automated image processing-based classification system to classify fresh and rotten cucumbers based on visual features such as color, texture, and shape, in order to improve efficiency and consistency in the cucumber quality selection process. The applied method involves image processing with color space conversion from RGB to LAB to separate brightness and color. Additionally, improvements were made using noise reduction techniques and a median filter to minimize noise interference in the images, resulting in more accurate analysis. Noise reduction is applied to reduce noise that appears during the image acquisition process, which can disrupt the recognition of important features in cucumber images. The use of a median filter helps smooth the images without reducing important details, which is essential to preserve relevant visual information for classification. The K-Means Clustering algorithm is used to group the images into two clusters, namely fresh and rotten cucumbers. The data used includes 70 test images, consisting of 35 fresh cucumbers and 35 rotten cucumbers. The results of this study indicate that this method, with the application of noise reduction enhancement and median filter, successfully classifies fresh and rotten cucumbers with an accuracy rate of 98.6%, where 69 out of 70 images are correctly identified. The K-Means Clustering method enhanced with noise reduction and median filter is proven to be effective and accurate in determining the types of fresh and rotten cucumbers

Full Text:

PDF

References


Ratna Indah Juwita Harahap, Sumi Khairani, And Rismayanti, “Implementasi Metode K-Nearest Neighbor Untuk Klasifikasi Penyakit Tanaman Mentimun Pada Citra Daun,” J. Ilmu Komput. Dan Sist. Inf., Vol. 3, No. 2, Pp. 135–145, 2024, Doi: 10.70340/Jirsi.V3i2.123.

A. L. A. Zahro, A. Widiyanto, And N. Isnani, “Journal Of Language And Health Volume 3 No 2 , October 2022,” Vol. 3, No. 2, Pp. 71–78, 2022.

P. Of Et Al., “Pertumbuhan Dan Produksi Tanaman Mentimun Pada Berbagai Dosis Bokashi Blotong,” Vol. 3, 2024.

I. Ifmalinda, K. Fahmy, And N. L. Zein, “Studi Penambahan Ekstrak Daun Randu (Ceiba Pentandra) Pada Edible Coating Gel Lidah Buaya (Aloe Vera L.) Terhadap Mutu Mentimun (Cucumis Sativus L.),” J. Keteknikan Pertan. Trop. Dan Biosist., Vol. 11, No. 1, Pp. 48–62, 2023, Doi: 10.21776/Ub.Jkptb.2023.011.01.05.

Yuda Permadi And Murinto, “Buah Menggunakan Metode Ekstraksi Ciri Statistik,” J. Inform., Vol. 9, No. 1, Pp. 1028–1038, 2015.

A. Maya, K. Putri, A. F. Rozi, S. Informasi, U. Mercu, And B. Yogyakarta, “Implementasi Convutional Neural Network Dalam,” Vol. 8, No. 5, Pp. 10388–10394, 2024.

A. Pramudita, S. Bill, F. Ginting, I. Syahfitri, H. Silviya, And F. A. Rahman, “Literatur Review : Klasifikasi Kualitas Beras Berdasarkan Citra Digital,” Vol. 1, No. 1, Pp. 30–34, 2024.

R. Setya Nugraha And A. Hermawan, “Optimasi Akurasi Metode Convolutional Neural Network Untuk Klasifikasi Kualitas Buah Apel Hijau,” J. Mnemon., Vol. 6, No. 2, Pp. 149–156, 2023, Doi: 10.36040/Mnemonic.V6i2.6730.

H. Herlina And Z. Ernaningsih, “Implementasi K-Means Clustering Untuk Analisis Tingkat Pemahaman Computational Thinking Siswa Sekolah Dasar,” J. Media Inform. Budidarma, Vol. 7, No. 3, P. 1405, 2023, Doi: 10.30865/Mib.V7i3.6132.

F. A. P. Efran, Khairil, And J. Jumadi, “Implementasi Metode K-Means Clustering Pada Segmentasi Citra Digital,” J. Media Infotama, Vol. 18, No. 2, Pp. 291–301, 2022.

H. H. Draz, N. E. Elashker, And M. M. A. Mahmoud, “Optimized Algorithms And Hardware Implementation Of Median Filter For Image Processing,” Circuits, Syst. Signal Process., Vol. 42, No. 9, Pp. 5545–5558, 2023, Doi: 10.1007/S00034-023-02370-X.

J. Yang, J. Chen, J. Li, S. Dai, And Y. He, “An Improved Median Filter Based On Yolov5 Applied To Electrochemiluminescence Image Denoising,” Electron., Vol. 12, No. 7, Pp. 1–25, 2023, Doi: 10.3390/Electronics12071544.

J. Sulaksono, D. W. Widodo, And R. K. Niswatin, “Analisis Hasil Perbaikan Citra Menggunakan Median Filter Dan 2d Median Filter,” Semin. Nas. Teknol. Sains, Vol. 3, No. 1, Pp. 438–443, 2024, Doi: 10.29407/Stains.V3i1.4361.

F. Sakr, N. Rafiq, S. Muthusamy, S. Pandiyan, And C. Manickam, “A New Method For Designing An Efficient Switching Median Filter Using Vlsi Architecture To Remove Salt And Pepper Noise,” Vol. 1, No. 2, Pp. 57–68, 2022.

E. Renaldo, M. F. R. Pratama, And F. Prasetya, “Operasi Titik Pada Pengolahan Citra Digital Untuk Matlab,” Mdp Student Conf., Pp. 200–205, 2022.

G. Perrot, S. Domas, And R. Couturier, “How Separable Median Filters Can Get Better Results Than Full 2d Versions: Theoretical Approach, Experimental Study And Gpu-Optimized Implementation,” J. Supercomput., Vol. 78, No. 7, Pp. 10118–10148, 2022, Doi: 10.1007/S11227-021-04233-1.

Oktamia Anggraini Putri, “Jurnal Pendidikan Dan Konseling,” J. Pendidik. Dan Konseling, Vol. 4, No. 20, Pp. 1349–1358, 2022.

N. Putu, E. Merliana, And A. J. Santoso, “Analisa Penentuan Jumlah Cluster Terbaik Pada Metode K-Means,” Pp. 978–979.

M. Al Fatih, A. A. Riadi, And Evanita, “Identifikasi Tingkat Kematangan Buah Pisang Kepok Berdasarkan Warna Dan Tekstur Dengan Metode K-Means,” Smartai J., Vol. 1, No. 4, Pp. 201–206, 2022, [Online]. Available: Https://Ejournal.Abivasi.Id/Index.Php/Smartai

Rachmadhany Iman, Basuki Rahmat, And Achmad Junaidi, “Implementasi Algoritma K-Means Dan Knearest Neighbors (Knn) Untuk Identifikasi Penyakit Tuberkulosis Pada Paru-Paru,” Repeater Publ. Tek. Inform. Dan Jar., Vol. 2, No. 3, Pp. 12–25, 2024, Doi: 10.62951/Repeater.V2i3.77.

N. Wakhidah, “Clustering Menggunakan K-Means Algorithm,” J. Transform., Vol. 8, No. 1, P. 33, 2010, Doi: 10.26623/Transformatika.V8i1.45.

S. F. Nazila, Y. Arman, D. Wahyuni, N. Nurhasanah, And Y. S. Putra, “Deteksi Dini Serangan Hama Penyakit Pada Cabai Rawit Menggunakan Metode Image Recognition,” J. Tek. Inform. Dan Sist. Inf., Vol. 9, No. 2, Pp. 232–241, 2023, Doi: 10.28932/Jutisi.V9i2.6342.

F. Aditiya And R. A. Sandra, “Seminar Nasional Teknologi Komputer & Sains (Sainteks) Perbaikan Citra Hasil Kamera Handphone Dengan Metode Median Filter,” Semin. Nas. Teknol. Komput. Sains, Pp. 401–404, 2020.

F. W. Pratama, M. Ziidan, R. D. Saleh, And S. Bagaskara, “Image Processing Dengan Bahasa Pemrograman Python Menggunakan Metode Median Filtering Untuk Reduksi Noise Citra Digital,” Vol. 2, No. 1, Pp. 33–37, 2024.




DOI: https://doi.org/10.30645/kesatria.v6i1.549

DOI (PDF): https://doi.org/10.30645/kesatria.v6i1.549.g544

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: