Komparasi Metode SVM dan Logistic Regression untuk Klasifikasi Hipotesa Penyakit Kanker Paru Paru Berdasarkan Gejala Awal
(1) Universitas Semarang, Indonesia
(2) Universitas Semarang, Indonesia
(*) Corresponding Author
Abstract
Lung cancer is the uncontrolled growth of cancer cells in lung tissue that occurs due to various carcinogenic substances. Throughout Indonesia, this disease is still the leading cause of death from cancer. The main risk factors include smoking habits, exposure to cigarette smoke, chest pain. Namely, classification is one way of early detection that can reduce the death rate of lung cancer. Various classification techniques have been proposed in various fields such as machine learning and expert systems. In machine learning, there are two methods used in classification, namely SVM and Logistic Regression. The advantage of SVM is to divide data into hyperplanes so that the data space is divided into two classes. SVM theory begins by collecting data that can be separated by a straight line using a hyperplane, then grouped by class. While Logistic Regression is used to describe the relationship between categorical response variables and covariates. Specifically, there is a direct relationship between the independent variable and the logarithm of the probability of an event occurring. This study aims to compare which is the best using the SVM algorithm and the Logistic Regression Algorithm in the classification of lung cancer. The lung cancer disease dataset has a total of 309 data where the data is separated into two parts, namely 70% training data consisting of 216 data, while 30% test data consists of 93 data. The performance used in predicting the model is Accuracy, Precision, Recall, and F1-Score. From the research conducted, the Accuracy value of the Logistic Regression Algorithm was 97.85%. In this case, the Logistic Regression algorithm has better performance in classifying lung cancer than the SVM algorithm.
Full Text:
PDFReferences
R. D. Marzuq, S. A. Wicaksono, And N. Y. Setiawan, “Prediksi Kanker Paru-Paru Menggunakan Algoritme Random Forest Decision Tree,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. 7, No. 7, Pp. 3448–3456, 2023.
F. Islami Et Al., “Annual Report To The Nation On The Status Of Cancer, Part 1: National Cancer Statistics,” J. Natl. Cancer Inst., Vol. 113, No. 12, Pp. 1648–1669, 2021, Doi: 10.1093/Jnci/Djab131.
D. Septhya Et Al., “Implementasi Algoritma Decision Tree Dan Support Vector Machine Untuk Klasifikasi Penyakit Kanker Paru,” Malcom Indones. J. Mach. Learn. Comput. Sci., Vol. 3, No. 1, Pp. 15–19, 2023, Doi: 10.57152/Malcom.V3i1.591.
P. L. Paelongan And I. Palupi, “Lung Cancer Prediction Model Using Logistic Linear Regression With Imbalanced Dataset,” Ind. J. Comput., Vol. 7, No. 2, Pp. 1–14, 2022, Doi: 10.34818/Indojc.2022.7.2.616.
U. Khultsum, F. Sarasati, And G. Taufik, “Penerapan Metode Mobile-Net Untuk Klasifikasi Citra Penyakit Kanker Paru-Paru,” Jurikom (Jurnal Ris. Komputer), Vol. 9, No. 5, P. 1366, 2022, Doi: 10.30865/Jurikom.V9i5.4918.
R. . Putri, “Implemantasi Metode Convolutional Neural Network Dan Ekstraksi Glcm Pada Klasifikasi Kanker Paru,” Semin. Nas. Rekayasa 2022, Vol. 23, No. 4, Pp. 70–79, 2022.
S. Firyal Nabila, D. Setiawan Hendyca Putra, S. Farlinda, E. Tri Ardianto, J. Kesehatan, And P. Negeri Jember, “J-Remi : Jurnal Rekam Medik Dan Informasi Kesehatan Analisis Faktor Risiko Pada Penyakit Karsinoma Paru (C34) Pasien Rawat Inap Di Rumah Sakit Baladhika Husada Jember,” Vol. 2, No. 2, Pp. 244–254, 2021.
S. Akbar, M. S. Qisam, And G. A. Yasmin, “Identifikasi Kanker Paru-Paru Menggunakan Metode Ekualisasi Histogram Dan Lbp,” J. Electron. Instrum., Vol. 1, No. 1, Pp. 1–6, 2023.
N. K. C. Pratiwi, N. Ibrahim, And S. Saidah, “Prediksi Kanker Paru Menggunakan Grid Search Untuk Optimasi Hyperparameter Pada Algoritma Mlp Dan Logistic Regression,” Elkomika J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., Vol. 12, No. 3, P. 556, 2024, Doi: 10.26760/Elkomika.V12i3.556.
M. Annan, M. Mustofa, And H. N. Wahiid, “Penggunaan Algoritma Knn Dalam Deteksi Awal Kanker Paru-Paru Menggunakan Data Medis,” Vol. 8, Pp. 485–493, 2024.
A. Desiani Et Al., “Perbandingan Klasifikasi Penyakit Kanker Paru-Paru Menggunakan Support Vector Machine Dan K-Nearest Neighbor,” J. Process., Vol. 18, No. 1, Pp. 54–62, 2023, Doi: 10.33998/Processor.2023.18.1.700.
M. Tiara Et Al., “Pemanfaatan Algoritma Adasyn Dan Support Vector Machine Dalam Meningkatkan Akurasi Prediksi Kanker Paru-Paru,” Vol. 8, No. 5, Pp. 8773–8778, 2024.
D. Benaya, “Implementasi Random Forest Dalam Klasifikasi Kanker Paru-Paru,” Jointer J. Informatics Eng., Vol. 5, No. 01, Pp. 27–31, 2024, Doi: 10.53682/Jointer.V5i01.331.
Jatnika Fahmi Idris, Rafid Ramadhani, And Muhammad Malik Mutoffar, “Klasifikasi Penyakit Kanker Paru Menggunakan Perbandingan Algoritma Machine Learning,” J. Media Akad., Vol. 2, No. 2, 2024, Doi: 10.62281/V2i2.145.
N. R. Muntiari And K. H. Hanif, “Klasifikasi Penyakit Kanker Payudara Menggunakan Perbandingan Algoritma Machine Learning,” J. Ilmu Komput. Dan Teknol., Vol. 3, No. 1, Pp. 1–6, 2022, Doi: 10.35960/Ikomti.V3i1.766.
H. Irsyad And D. Mariana, “Klasifikasi Pneumonia Pada Chest X-Ray Paru-Paru Dengan Ekstraksi Fitur Local Binary Pattern Menggunakan Support Vector Machine,” J. Ilm. Betrik, Vol. 12, No. 1, Pp. 54–62, 2021, Doi: 10.36050/Betrik.V12i1.294.
M. I. Y. Helmi, D. Anggraeni, And A. F. Hadi, “Diagnosis Penderita Penyakit Kanker Paru Menggunakan Support Vector Machine Dan Naïve Bayes,” Stat. J. Theor. Stat. Its Appl., Vol. 21, No. 1, Pp. 1–4, 2021, Doi: 10.29313/Jstat.V21i1.7566.
A. Asuntha And A. Srinivasan, “Deep Learning For Lung Cancer Detection And Classification,” Multimed. Tools Appl., Vol. 79, No. 11, Pp. 7731–7762, 2020, Doi: 10.1007/S11042-019-08394-3.
I. A. Ricky, I. F. Hanif, F. N. Hasan, E. S. Sinduningrum, Z. Halim, And N. Nunik, “Analisis Sentimen Opini Masyarakat Terkait Penyelenggaraan Sistem Elektronik Menggunakan Metode Logistic Regression,” J. Linguist. Komputasional, Vol. 5, No. 2, P. 77, 2022, [Online]. Available: Https://T.Co/23c4krbjp
Ginanjar Abdurrahman And H. Oktavianto, “Klasifikasi Teks Mining Untuk Deteksi Kanker Menggunakan Support Vector Machine,” Justify J. Sist. Inf. Ibrahimy, Vol. 3, No. 1, Pp. 16–20, 2024, Doi: 10.35316/Justify.V3i1.5028.
A. S. Rahayu, A. Fauzi, And R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (Svm) Pada Analisis Sentimen Spotify,” J. Sist. Komput. Dan Inform., Vol. 4, No. 2, P. 349, 2022, Doi: 10.30865/Json.V4i2.5398.
DOI: https://doi.org/10.30645/kesatria.v6i1.562
DOI (PDF): https://doi.org/10.30645/kesatria.v6i1.562.g557
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: