Optimasi Distribusi Teknisi Pembukaan Cabang Baru Service Center SHARP di Wilayah Tebet Menggunakan Algoritma Genetika

Angga Ariawan(1*), Anintyo Herdadi(2), Vani Maharani Nasution(3), Sestri Novia Rizki(4),

(1) Universitas Media Nusantara Citra, Indonesia
(2) Universitas Media Nusantara Citra, Indonesia
(3) Universitas Media Nusantara Citra, Indonesia
(4) Universitas Media Nusantara Citra, Indonesia
(*) Corresponding Author

Abstract


The opening of a new branch in the Tebet area by the SHARP Service Center requires an optimal technician distribution strategy to ensure efficient after-sales service and customer satisfaction. This research proposes a model based on genetic algorithms to divide the workforce from two major branches, taking into account technical skills and regional experience as the main parameters. The weights of each parameter are explicitly assigned, with 20% for technical skills and 80% for regional experience, reflecting the priority of service needs in the coverage area. This model is designed to identify the five best technicians capable of meeting service needs in the coverage area, including Tebet, Pasar Minggu, Jatinegara, and surrounding areas. By using genetic algorithms involving 100 generations and an initial population size of 10 individuals, this research successfully produced optimal solutions in an efficient. that is less than 10 seconds per iteration on standard computing devices. The results show that the genetic algorithm is capable of providing a suitable technician distribution solution for the needs of new areas and can improve the quality of after-sales service.

Full Text:

PDF

References


Krisno and H. Kuswanto, “Sistem Informasi Penjadwalan Kunjungan Teknisi Menggunakan Algoritma Genetika Pada Pt Solusindo Bintang Pratama,” Jurnal Informatika, vol. 8, Oct. 2024.

H. A. Hatim and F. Ahmad, “Pendekatan Algoritma Genetika Dalam Upaya Optimalisasi Penjadwalan Di Pt. Nuansa Indah,” JISI: Jurnal Integrasi Sistem Industri, vol. 9, no. 2, p. 145, Aug. 2022, doi: 10.24853/jisi.9.2.145-154.

Andika, M. Salsabil, Husain T, and N. Salman, “Implementasi Algoritma Genetika Untuk Penjadwalan Mata Kuliah Berbasis Web,” Jurnal Dipanagara Komputer teknik Informatika, vol. 15, Dec. 2022.

A.-E. Yahiaoui, S. Afifi, and H. Afifi, “Enhanced Iterated local search for the technician routing and scheduling problem,” Mar. 2023, [Online]. Available: http://arxiv.org/abs/2303.13532

Y. P. Rosanti, I. Triana, and S. Pancahayani, “Penerapan Algoritma Genetika Untuk Mencari Optimasi Kasus TSP Pada 20 Gerai Indomart,” 2024.

W. Anggraeni, S. Si, and M. Kom, “Khairil Juhdi Siregar NRP 5209 100 710 Optimization of Project Scheduling Using Genetic Algorithm Method.”

R. Fadillah Harahap, “JITE (Journal of Informatics and Telecommunication Engineering) The Application Of Genetic Algorithm In Construction Project Planning System At Cv. Haza Mulia Engineering,” JITE, vol. 4, no. 2, 2021, doi: 10.31289/jite.vxix.xxx.

L. A. Pangestu, S. H. Suryawan, and A. J. Latipah, “Penerapan Algoritma Genetika Dalam Penjadwalan Mata Pelajaran,” Jurnal Informatika, vol. 10, no. 2, pp. 194–205, Oct. 2023, doi: 10.31294/inf.v10i2.16701.

A. Nazarius, R. Delon Pratama, R. A. Soebagijo, R. Priskila, and V.

Handrianus Pranatawijaya, “Pengimplementasian Algoritma Genetika Dalam Sistem Penjadwalan Praktikum,” 2024.

P. Khairunisak and Y. Hendriyani, “Jurnal Vocational Teknik Elektronika dan Informatika Aplikasi Penjadwalan Perkuliahan Menggunakan Algoritma Genetika (Studi Kasus : Jurusan Teknik Elektronika FT-UNP),” vol. 9, no. 3, 2021, [Online]. Available: http://ejournal.unp.ac.id/index.php/voteknika/.




DOI: https://doi.org/10.30645/kesatria.v6i2.599

DOI (PDF): https://doi.org/10.30645/kesatria.v6i2.599.g594

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: