Indexing metadata

Analisa Hasil Performansi Algoritma Apriori dan FP-Growth dalam Rekomendasi Kombinasi Menu


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Analisa Hasil Performansi Algoritma Apriori dan FP-Growth dalam Rekomendasi Kombinasi Menu
 
2. Creator Author's name, affiliation, country Maulana Hassan Sechuti; Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia; Indonesia
 
2. Creator Author's name, affiliation, country Yisti Vita Via; Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia; Indonesia
 
2. Creator Author's name, affiliation, country Hendra Maulana; Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia; Indonesia
 
3. Subject Discipline(s)
 
3. Subject Keyword(s)
 
4. Description Abstract Currently, technological developments are increasingly rapid with the emergence of various technologies that make it easier for humans to do their activities, for example in the food business sector. However, the development of technology has not been maximally utilized by several food business, one of which is the Sidoarjo area ropi bakery which has problems managing its stock and has difficulty in determining menu combinations for promotional activities. This can be overcome by analyzing all transaction data at the Sidoarjo area ropi bakery. Analysis of transaction patterns is carried out to obtain menu combinations. This analysis can be done using data mining association algorithms. This research focuses more on comparing the Apriori and FP-Growth data mining association algorithms when the two algorithms are implemented into a web-based information system. In this study, a comparison was made by analyzing 637 transaction data. In analyzing 637 transaction data, the minimum support value variation used is less then equal 10% with a minimum confidence value of 60%. The result of the analysis of the two algorithms when implemented into the information system are superior to the FP-Growth algorithm.
 
5. Publisher Organizing agency, location LPPM STIKOM Tunas Bangsa
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2024-04-30
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/386
 
10. Identifier Digital Object Identifier (DOI) https://doi.org/10.30645/kesatria.v5i2.386
 
10. Identifier Digital Object Identifier (DOI)
(PDF)
https://doi.org/10.30645/kesatria.v5i2.386.g382
 
11. Source Title; vol., no. (year) Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen); Vol 5, No 2 (2024): Edisi April
 
12. Language English=en
 
13. Relation Supp. Files
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions Copyright (c) 2024 Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen)