Penerapan Algoritma K-Means untuk Mengetahui Tingkat Potensi Penyakit di Daerah Simalungun

Dina Patresia Samuana Manurung, Remonaldi Purba, Reynaldo Saragih, P. P.P.A.N.W Fikrul Ilmi R.H Zer, Dedy Hartama

Abstract


Health is the most important source in human life. Many people who do not pay attention to their health are not even aware of the disease that occurs in the surrounding environment, so that people are vulnerable to disease, especially in the Simalungun area. The data source of this research is based on the results of the Central Statistics Agency of Simalungun Regency in 2019. There are 32 subdistricts with frequent disease outbreaks, including pneumonia, diarrhea and dengue fever. It is necessary to apply the K-Means algorithm by grouping 3 types of diseases based on the District in the Simalungun area. By using the K-Means algorithm in this study, it can be seen the level of potential disease in Simalungun Regency.

Full Text:

PDF

References


A. Bastian, H. Sujadi and G. Febrianto, “ Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka)”, Jurnal Sistem Informasi (Journal of Information System)., vol. 14, Issue 1, (2018).

Prasetyo, Eko, “Data Mining: Konsep dan Aplikasi menggunakan MATLAB”, Yogyakarta: CV Andi Offset, (2012).

M. Kantardzic, J. Wiley and Sons, “Data Mining: Concepts, Models, methods, and Algorithms”, (2003).

Santosa, Budi, “Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis”, Yogyakarta: Graha Ilmu, (2007).

Nango, D Noviati, "Penerapan algoritma K-Means untuk clustering data anggaran pendapatan belanja daerah di Kabupaten XYZ.", Universitas Gorontalo (2012).

Agusta, Yudi, "K-Means–Penerapan, Permasalahan dan Metode Terkait.", Jurnal Sistem dan Informatika 3.1 (2007). pp. 47-60.




DOI: http://dx.doi.org/10.30645/senaris.v2i0.177

Refbacks

  • There are currently no refbacks.


&nbsp