Improving Image Quality to Assist Brand Logo Detection in Blurred Images

Jibril Hartri Putra(1*), Gede Putra Kusuma(2),

(1) Bina Nusantara University, Jakarta, Indonesia
(2) Bina Nusantara University, Jakarta, Indonesia
(*) Corresponding Author

Abstract


Logo detection is a challenging task in computer vision, especially when the logos are blurred or distorted in the images. Image deblurring is a technique that can improve the quality and clarity of the logos, which can enhance the logo detection performance. In this paper, we propose a novel method for logo detection that combines image deblurring and robust logo detection techniques. We create synthetic blurred images from the Flickr Logos 27 Dataset using Motion Blur data to improve deblurring methods. Then, we use three different image deblurring methods, namely Restormer, DeblurGAN-v2, and DeepRFT, to preprocess the images and remove the blur effects to improve the sharpness of images. We then use two different logo detection methods, namely Yolov7 and Robust Logo Detection, to detect and recognise the logos in the images. We evaluate our method on the Flickr Logos 27 dataset, which is a well-known and widely used dataset for logo detection. It contains 810 annotated images of 27 logo classes, as well as 4207 distractor images and 270 query images. We show that combining the method of Robust Logo Detection with Restormer achieves the highest mean average precision (mAP) at 0,754 among all the methods, and significantly improves the logo detection accuracy on blurred images. We conclude that image deblurring can effectively enhance logo detection performance and that our method is the best combination of image deblurring and logo detection techniques.

Full Text:

PDF

References


Luffarelli, J., Mukesh, M., and Mahmood, A., “Let the Logo Do the Talking: The Influence of Logo Descriptiveness on Brand Equity,” Journal of Marketing Research, vol. 56 no. 5, pp. 862-878, Jul. 2019. DOI: 10.1177/0022243719845000.

J Hu, Y Zhu, B Zhao, J Zheng, C Zhao, X Zhu, K Wu, and D Tang., “Makeup216: Logo recognition with adversarial attention representations,” arXiv preprint, Dec. 2021. DOI: 10.48550/arXiv.2112.06533.

Zhao, Q., & Guo, W., “Detection of Logos of Moving Vehicles under Complex Lighting Conditions. Applied Sciences,” vol. 12, no. 8, Apr. 2022. DOI: 10.3390/app12083835.

Zhou, L., Min, W., Lin, D., Han, Q., & Liu, R., “One-shot logo detection for large video datasets and live camera surveillance in criminal investigations,” in Proc. of SPIE, Amsterdam, Netherlands, 2023, pp. 127420E. DOI: 10.1117/12.2681903

L. Zhou, W. Min, D. Lin, Q. Han and R. Liu., “Detecting motion blurred vehicle logo in IoV using filter-DeblurGAN and VL-YOLO,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 3604-3614, Jan. 2020. DOI: 10.1109/TVT.2020.2969427.

Mane, D., Bidwe, R., Zope, B., and Ranjan, N., “Traffic Density Classification for Multiclass Vehicles Using Customized Convolutional Neural Network for Smart City,” in Proc. ICCIS, Singapore, 2022, pp. 1015-1030.

He, P., Wu, A., Huang, X., Rangarajan, A., and Ranka, S., “Machine Learning-Based Highway Truck Commodity Classification Using Logo Data,” Applied Sciences., vol. 12, no. 4, Feb. 2022. DOI: 10.3390/app12042075.

Zhang, K., Ren, W., Luo, W., Lai, W.-S., Stenger, B., Yang, M.-H., and Li, H., “Deep Image Deblurring: A Survey,” International Journal of Computer Vision., vol. 130, pp. 2103-2130, Jun. 2022. DOI: 10.48550/arXiv.2201.10700

Wen, F., Ying, R., Liu, Y., Liu, P., and Truong, T.-K., “A simple local minimal intensity prior and an improved algorithm for blind image deblurring,” IEEE Transactions on Circuits and Systems for Video Technology., vol. 31, no. 8, pp. 2923-2937, Oct. 2020. DOI: 10.1109/TCSVT.2020.3034137.

Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., and Li, H. “Deblurring by Realistic Blurring,” in Proc. of CVPR, 2020, pp. 2737-2746. DOI: 10.48550/arXiv.2004.01860

Wang, Z., Ren, J., Zhang, J., and Luo, P., “Image Deblurring Aided by Low-Resolution Events,” Electronics, vol. 11, no. 4, pp. 631, Feb. 2022. DOI: 10.3390/electronics11040631

Li, J., Wang, W., Nan, Y., and Ji, H., “Self-Supervised Blind Motion Deblurring with Deep Expectation Maximization,” in Proc. of CVPR, 2023. pp. 13986-13996. DOI: 10.1109/CVPR52729.2023.01344

Kupyn, O., Martyniuk, T., Wu, J., and Wang, Z., “DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better,” in Proc. of ICCV, Seoul, South Korea, Oct. 2019, pp. 8878-8887. DOI: 10.48550/arXiv.1908.03826

Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., and Yang, M.-H., “Restormer: Efficient Transformer for High-Resolution Image Restoration,” in Proc. of CVPR, New Orleans, Louisiana, Jun. 2022, pp. 5728-5739. DOI: 10.48550/arXiv.2111.09881

Mao, X., Liu, Y., Liu, F., Li, Q., Shen, W., and Wang, Y., “Intriguing Findings of Frequency Selection for Image Deblurring,” in Proc. AAAI, Washington DC, USA, Feb. 2023, pp. 1905-1913. DOI: 10.48550/arXiv.2111.11745

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M., “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors,” in Proc. CVPR, Vancouver, Canada, Jun. 2023, pp. 7464-7475. DOI: 10.48550/arXiv.2207.02696

D. Bugrahan, Logo Detection - YOLOv7. 2023, [Online]. Available: https://github.com/nuwandda/yolov7-logo-detection

Jia, X., Yan, H., Wu, Y., Wei, X., Cao, X., & Zhang, Y., “An Effective and Robust Detector for Logo Detection,” arXiv:2108.00422 cs.CV, Aug. 2021, Accessed: Dec. 11, 2023. [Online]. Available: https://arxiv.org/abs/2108.00422

Romberg, S., Pueyo, L. G., Lienhart, R., & van Zwol, R., “Scalable Logo Recognition in Real-World Images,” in Proc. ICMR11, Trento, Italy, Apr. 2011, pp. 1-8. DOI: 10.1145/1991996.1992021

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S., “Feature Pyramid Networks for Object Detection,” in Proc. IEEE CVPR, Honolulu, USA, Jul. 2017, pp. 936-944. DOI: 10.48550/arXiv.1612.03144

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A., “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” in Proc. Thirty-First AAAI, San Francisco, California, USA, Feb. 2017, pp. 4278–4284. DOI: 10.48550/arXiv.1602.07261

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A., “Image-to-image translation with conditional adversarial networks,” In Proc. IEEE CVPR, Honolulu, USA, Jul. 2017, pp. 1125-1134. DOI: 10.48550/arXiv.1611.07004

Nah, S., Kim, T. H., & Lee, K. M., “Deep Multi-Scale Convolutional Neural Network for Dynamic Scene Deblurring,” In Proc. IEEE CVPR, Honolulu, USA, Jul. 2017, pp. 3883-3891. DOI: 10.48550/arXiv.1612.02177

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I., “Attention is All you Need,” In Proc. NIPS, Long Beach, California, USA, Dec. 2017. DOI: 10.48550/arXiv.1706.03762

Cho, S.-J., Ji, S.-W., Hong, J.-P., Jung, S.-W., & Ko, S.-J., “Rethinking Coarse-To-Fine Approach in Single Image Deblurring,” In Proc. IEEE ICCV, Virtual, Oct. 2017, pp. 4641-4650. DOI: 10.48550/arXiv.2108.05054

Chen, L., Chu, X., Zhang, X., & Sun, J., “Simple Baselines for Image Restoration,” In Proc. ECCV, Tel Aviv, Israel, Oct. 2022, pp. 17-33. DOI: 10.1007/978-3-031-20071-7_2

Qiao, S., Chen, L.-C., & Yuille, A., “DetectoRS: Detecting Objects With Recursive Feature Pyramid and Switchable Atrous Convolution,” In Proc. IEEE CVPR, Virtual, Jun. 2021. pp. 10213-10224. DOI: 10.48550/arXiv.2006.02334

Tan, J., Lu, X., Zhang, G., Yin, C., & Li, Q., “Equalization Loss v2: A New Gradient Balance Approach for Long-Tailed Object Detection,” In Proc. IEEE CVPR, Virtual, Jun. 2021, pp. 1685-1694. DOI: 10.48550/arXiv.2012.08548

Jin, X., Su, W., Zhang, R., He, Y., & Xue, H., “The Open Brands Dataset: Unified brand detection and recognition at scale,” In Proc. IEEE ICASSP, Barcelona, Spain, May. 2020, pp. 4387-4391. DOI: 10.48550/arXiv.2012.07350

Bai, J., Chen, R., & Liu, M., "Feature-attention module for context-aware image-to-image translation," Visual Computer, vol. 36, pp. 2145-2159 Sept. 2020. DOI: 10.1007/s00371-020-01943-0

Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., & Barnard, K., “Attentional Feature Fusion,” In Proc. IEEE/CVF WACV, Virtual, Jan. 2021, pp. 3560-3569. DOI: 10.48550/arXiv.2009.14082




DOI: https://doi.org/10.30645/kesatria.v5i1.346

DOI (PDF): https://doi.org/10.30645/kesatria.v5i1.346.g343

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: