Improving Image Quality to Assist Brand Logo Detection in Blurred Images
(1) Bina Nusantara University, Jakarta, Indonesia
(2) Bina Nusantara University, Jakarta, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Luffarelli, J., Mukesh, M., and Mahmood, A., “Let the Logo Do the Talking: The Influence of Logo Descriptiveness on Brand Equity,” Journal of Marketing Research, vol. 56 no. 5, pp. 862-878, Jul. 2019. DOI: 10.1177/0022243719845000.
J Hu, Y Zhu, B Zhao, J Zheng, C Zhao, X Zhu, K Wu, and D Tang., “Makeup216: Logo recognition with adversarial attention representations,” arXiv preprint, Dec. 2021. DOI: 10.48550/arXiv.2112.06533.
Zhao, Q., & Guo, W., “Detection of Logos of Moving Vehicles under Complex Lighting Conditions. Applied Sciences,” vol. 12, no. 8, Apr. 2022. DOI: 10.3390/app12083835.
Zhou, L., Min, W., Lin, D., Han, Q., & Liu, R., “One-shot logo detection for large video datasets and live camera surveillance in criminal investigations,” in Proc. of SPIE, Amsterdam, Netherlands, 2023, pp. 127420E. DOI: 10.1117/12.2681903
L. Zhou, W. Min, D. Lin, Q. Han and R. Liu., “Detecting motion blurred vehicle logo in IoV using filter-DeblurGAN and VL-YOLO,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 3604-3614, Jan. 2020. DOI: 10.1109/TVT.2020.2969427.
Mane, D., Bidwe, R., Zope, B., and Ranjan, N., “Traffic Density Classification for Multiclass Vehicles Using Customized Convolutional Neural Network for Smart City,” in Proc. ICCIS, Singapore, 2022, pp. 1015-1030.
He, P., Wu, A., Huang, X., Rangarajan, A., and Ranka, S., “Machine Learning-Based Highway Truck Commodity Classification Using Logo Data,” Applied Sciences., vol. 12, no. 4, Feb. 2022. DOI: 10.3390/app12042075.
Zhang, K., Ren, W., Luo, W., Lai, W.-S., Stenger, B., Yang, M.-H., and Li, H., “Deep Image Deblurring: A Survey,” International Journal of Computer Vision., vol. 130, pp. 2103-2130, Jun. 2022. DOI: 10.48550/arXiv.2201.10700
Wen, F., Ying, R., Liu, Y., Liu, P., and Truong, T.-K., “A simple local minimal intensity prior and an improved algorithm for blind image deblurring,” IEEE Transactions on Circuits and Systems for Video Technology., vol. 31, no. 8, pp. 2923-2937, Oct. 2020. DOI: 10.1109/TCSVT.2020.3034137.
Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., and Li, H. “Deblurring by Realistic Blurring,” in Proc. of CVPR, 2020, pp. 2737-2746. DOI: 10.48550/arXiv.2004.01860
Wang, Z., Ren, J., Zhang, J., and Luo, P., “Image Deblurring Aided by Low-Resolution Events,” Electronics, vol. 11, no. 4, pp. 631, Feb. 2022. DOI: 10.3390/electronics11040631
Li, J., Wang, W., Nan, Y., and Ji, H., “Self-Supervised Blind Motion Deblurring with Deep Expectation Maximization,” in Proc. of CVPR, 2023. pp. 13986-13996. DOI: 10.1109/CVPR52729.2023.01344
Kupyn, O., Martyniuk, T., Wu, J., and Wang, Z., “DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better,” in Proc. of ICCV, Seoul, South Korea, Oct. 2019, pp. 8878-8887. DOI: 10.48550/arXiv.1908.03826
Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., and Yang, M.-H., “Restormer: Efficient Transformer for High-Resolution Image Restoration,” in Proc. of CVPR, New Orleans, Louisiana, Jun. 2022, pp. 5728-5739. DOI: 10.48550/arXiv.2111.09881
Mao, X., Liu, Y., Liu, F., Li, Q., Shen, W., and Wang, Y., “Intriguing Findings of Frequency Selection for Image Deblurring,” in Proc. AAAI, Washington DC, USA, Feb. 2023, pp. 1905-1913. DOI: 10.48550/arXiv.2111.11745
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M., “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors,” in Proc. CVPR, Vancouver, Canada, Jun. 2023, pp. 7464-7475. DOI: 10.48550/arXiv.2207.02696
D. Bugrahan, Logo Detection - YOLOv7. 2023, [Online]. Available: https://github.com/nuwandda/yolov7-logo-detection
Jia, X., Yan, H., Wu, Y., Wei, X., Cao, X., & Zhang, Y., “An Effective and Robust Detector for Logo Detection,” arXiv:2108.00422 cs.CV, Aug. 2021, Accessed: Dec. 11, 2023. [Online]. Available: https://arxiv.org/abs/2108.00422
Romberg, S., Pueyo, L. G., Lienhart, R., & van Zwol, R., “Scalable Logo Recognition in Real-World Images,” in Proc. ICMR11, Trento, Italy, Apr. 2011, pp. 1-8. DOI: 10.1145/1991996.1992021
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S., “Feature Pyramid Networks for Object Detection,” in Proc. IEEE CVPR, Honolulu, USA, Jul. 2017, pp. 936-944. DOI: 10.48550/arXiv.1612.03144
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A., “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” in Proc. Thirty-First AAAI, San Francisco, California, USA, Feb. 2017, pp. 4278–4284. DOI: 10.48550/arXiv.1602.07261
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A., “Image-to-image translation with conditional adversarial networks,” In Proc. IEEE CVPR, Honolulu, USA, Jul. 2017, pp. 1125-1134. DOI: 10.48550/arXiv.1611.07004
Nah, S., Kim, T. H., & Lee, K. M., “Deep Multi-Scale Convolutional Neural Network for Dynamic Scene Deblurring,” In Proc. IEEE CVPR, Honolulu, USA, Jul. 2017, pp. 3883-3891. DOI: 10.48550/arXiv.1612.02177
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I., “Attention is All you Need,” In Proc. NIPS, Long Beach, California, USA, Dec. 2017. DOI: 10.48550/arXiv.1706.03762
Cho, S.-J., Ji, S.-W., Hong, J.-P., Jung, S.-W., & Ko, S.-J., “Rethinking Coarse-To-Fine Approach in Single Image Deblurring,” In Proc. IEEE ICCV, Virtual, Oct. 2017, pp. 4641-4650. DOI: 10.48550/arXiv.2108.05054
Chen, L., Chu, X., Zhang, X., & Sun, J., “Simple Baselines for Image Restoration,” In Proc. ECCV, Tel Aviv, Israel, Oct. 2022, pp. 17-33. DOI: 10.1007/978-3-031-20071-7_2
Qiao, S., Chen, L.-C., & Yuille, A., “DetectoRS: Detecting Objects With Recursive Feature Pyramid and Switchable Atrous Convolution,” In Proc. IEEE CVPR, Virtual, Jun. 2021. pp. 10213-10224. DOI: 10.48550/arXiv.2006.02334
Tan, J., Lu, X., Zhang, G., Yin, C., & Li, Q., “Equalization Loss v2: A New Gradient Balance Approach for Long-Tailed Object Detection,” In Proc. IEEE CVPR, Virtual, Jun. 2021, pp. 1685-1694. DOI: 10.48550/arXiv.2012.08548
Jin, X., Su, W., Zhang, R., He, Y., & Xue, H., “The Open Brands Dataset: Unified brand detection and recognition at scale,” In Proc. IEEE ICASSP, Barcelona, Spain, May. 2020, pp. 4387-4391. DOI: 10.48550/arXiv.2012.07350
Bai, J., Chen, R., & Liu, M., "Feature-attention module for context-aware image-to-image translation," Visual Computer, vol. 36, pp. 2145-2159 Sept. 2020. DOI: 10.1007/s00371-020-01943-0
Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., & Barnard, K., “Attentional Feature Fusion,” In Proc. IEEE/CVF WACV, Virtual, Jan. 2021, pp. 3560-3569. DOI: 10.48550/arXiv.2009.14082
DOI: https://doi.org/10.30645/kesatria.v5i1.346
DOI (PDF): https://doi.org/10.30645/kesatria.v5i1.346.g343
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: