Penerapan Metode Backpropagation Dalam Memprediksi Jumlah Penjualan Oli Shell

Chairul Fadlan, Irfan Sudahri Damanik, Jaya Tata Hardinata

Abstract


The application of a prediction is very important to do in research, so that research becomes faster and directed. Just as in predicting the number of shell oil sales, studies and the use of appropriate methods are needed to obtain optimal results. The data used in this study is sales data from PT. Mitra Petra Sejahtera Kota Medan from 2012 to 2017. The algorithm used to make this prediction is the backpropagation algorithm. This algorithm is used to predict future results based on previous data. There are 6 architectural models used in the backpropagation algorithm, among others, 4-2-1 which will later produce predictions with 83% accuracy, 4-3-1 = 78%, 4-4-1 = 83%, 4- 5-1 = 78%, 4-8-1 = 100% and 4-10-1 = 72%. The best architecture of these 6 models is 4-8-1 with an accuracy rate of 94% with a level of Error 0.001, MSE = 0.04133616. so this architectural model is good enough to be used to predict the amount of shell oil sales.

Full Text:

PDF

References


M. A. Ridla, “Particle Swarm Optimization Sebagai Penentu Nilai Bobot Pada Artificial Neural Network Berbasis Backpropagation Untuk Prediksi Tingkat Penjualan Minyak Pelumas Pertamina,” J. Ilm. Inform., vol. 3, no. 1, pp. 183–192, 2018.

A. P. Windarto, “Implementasi JST Dalam Menentukan Kelayakan Nasabah Pinjaman KUR Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J. Sains Komput. Inform., vol. 1, no. 1, pp. 12–23, 2017.

M. Yanto, S. Defit, and G. W. Nurcahyo, “Memprediksi Jumlah Reservasi Kamar Hotel Dengan Metode Backpropagation ( Studi Kasus Hotel Grand Zuri Padang ),” J. KomTekInfo Fak. Ilmu Komput., vol. 2, no. 1, pp. 34–39, 2015.

Agus perdana windarto Anjar wanto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” Sinkron, vol. 2, no. 2, pp. 37–44, 2017.

A. Wanto, “Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Jumlah Kemiskinan Pada Kabupaten/Kota Di Provinsi Riau,” Kumpul. J. Ilmu Komput., vol. 05, no. 01, pp. 61–74, 2018.

A. T. Solikhun, M. Safii, “Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Siswa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation,” J. Sains Komput. Inform., vol. 1, no. 1, pp. 24–36, 2017.

Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA ( Studi kasus : Prediksi Prestasi Siswa SMAN 4 Ambon ),” J. Mat. Integr., vol. 11, no. 2, pp. 149–160, 2015.

M. Adi, P. Hutabarat, M. Julham, A. Wanto, P. Algoritma, and M. Produksi, “Penerapan Algoritma Backpropagation Dalam Memprediksi Produksi Tanaman Padi Sawah Menurut Kabupaten/Kota Di Sumatera Utara,” semanTIK, vol. 4, no. 1, pp. 77–86, 2018.

Jong Jek Siang, Jaringan Syaraf Tiruan & Pemrogramannya Menggunakan Matlab. Yogyakarta: Andi, 2009.

E. Hartato, D. Sitorus, and A. Wanto, “Analisis jaringan saraf tiruan untuk prediksi luas panen biofarmaka di indonesia,” semanTIK, vol. 4, no. 1, pp. 49–56, 2018.

Swastha, Basu. 2015. Manejemen Pejualan, Edisi III. Yogyakarta: Bpfe




DOI: http://dx.doi.org/10.30645/senaris.v1i0.45

Refbacks

  • There are currently no refbacks.


&nbsp