Penerapan Algoritma Naive Bayes untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor

Habibah Jayanti Damanik, Eka Irawan, Irfan Sudahri Damanik, Anjar Wanto

Abstract


Credit companies provide rentals for the community to help obtain transportation vehicles such as motorbikes, but also require the approval received by companies such as bad payments in the payment of loans issued to companies that make money or financing. With the many credit risks, companies must be selective in choosing consumers who will be given credit so as not to make the company suffer losses. The method used in this study is the Naïve Bayes Algorithm and processed using Rapidminer Studio 5.3 software. The data used consisted of 55 training data and 10 test data. There are 9 variables used in this study, namely marital status, number of children, home ownership, housing conditions, employment, tenure, age, income, and down payment. The level of accuracy obtained from testing using Rapidminer Studio 5.3 is equal to 90%. By using the Naive Bayes algorithm in classifying consumers, it is hoped that it can assist companies in carrying out the mining process on the previous data and make the right decisions in determining new consumers from previous consumer data.

Full Text:

PDF

References


M. R. Munandar, E. S. Astuti, and M. S. Hakam, “( Studi Pada Pekerja bagian Produksi PT . SEKAWAN KARYATAMA MANDIRI Sidoarjo ),” vol. 9, no. 1, pp. 1–9, 2014.

F. Zulfami, “ANALISA DAN PERANCANGAN APLIKASI DATA MINING PENENTUAN RESIKO KREDIT KEPEMILIKAN KENDARAAN BERMOTOR MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” Jurnal Infokar, vol. 1, no. 1, pp. 32–39, 2017.

D. J. F. Rozi and K. Yahya, “Analisa Risiko Kredit Sepeda Motor Pada PT . X Finance ( Studi Kasus Kantor Cabang Wilayah Gresik dan Lamongan),” JURNAL SAINS DAN SENI POMITS, vol. 2, no. 2, pp. 231–236, 2013.

R. Wijayatun and Y. Sulistyo, “Prediksi Rating Film Menggunakan Metode Naïve Bayes,” Jurnal Teknik Elektro, vol. 8, no. 2, pp. 60–63, 2016.

I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “Memanfaatkan Algoritma K-Means dalam Menentukan Pegawai yang Layak Mengikuti Asessment Center untuk Clustering Program SDP,” CESS (Journal of Computer Engineering System and Science), vol. 3, no. 1, pp. 87–93, 2018.

M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi dengan K-Means,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 311–319, 2018.

S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–8, 2018.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer dengan Metode K-Means (Study Kasus : Imunisasi Campak pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 224–230, 2018.




DOI: http://dx.doi.org/10.30645/senaris.v1i0.56

Refbacks

  • There are currently no refbacks.


&nbsp