Penerapan Jaringan Saraf Tiruan untuk Mengukur Korelasi Beban Kerja Dosen Terhadap Peningkatan Jumlah Publikasi

Putrama Alkhairi, Irfan Sudahri Damanik, Agus Perdana Windarto

Abstract


One important point in carrying out the functions of the Tridharma of Higher Education by lecturers is to carry out research and publish the results of their thoughts and analyzes. The demands of publication by the academic community of Higher Education have a considerable impact on the awareness of the lecturers of the importance of conducting studies, research and writing scientific works. The development of scientific work in Indonesia has been relatively better, especially since the enactment of government regulations, which required S1, S2 and S3 students to write articles in scientific journals as one of the prerequisites for graduation. Lecturers certainly have greater demands to actively write in scientific journals both at accredited national level and reputable international journals. So the authors conducted this study aimed at analyzing the correlation of the level of lecturer workload to the increase in the number of publications. STIKOM Tunas Bangsa does not yet have a system to analyze the level of lecturer workload with an increase in the number of studies. For this reason, it is necessary to apply the Backpropagation algorithm. ANN combined with the Backpropagation algorithm can measure the level of correlation. The variables used are structural positions, number of even and odd semester credits, number of services. The target used is the amount of research. So the pattern of correlation between the two variables is formed. The output of the lecturer workload is reduced by the target which is the number of publications. So the results obtained are correlations between lecturers' workloads to the increase in the number of publications.

Full Text:

PDF

References


W. Budiharto and D. Suhartono, ARTIFICIAL INTELLIGENCE KONSEP DAN PENERAPANNYA, ANDI Yogya. Yogyakarta, 2014.

Y. Nuraeni, “Penerapan Jaringan Syaraf Tiruan Untuk Mengukur Tingkat Korelasi Antara Nem Dengan Ipk Kelulusan Mahasiswa,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 7, no. 3, p. 195, 2009.

T. Dalgleish et al., Jaringan Syaraf Tiruan (Neural Network), vol. 136, no. 1. 2014.

R. N. Putri, D. Setiawan, and E. Mufadli, “Analisa Korelasi Peningkatan Jumlah Penelitian Dengan Tingkat Beban Kerja Dosen Menggunakan Metode Backpropagation,” 2016.

Solikhun and M. Safii, “Jaringan Saraf Tiruan Untuk Memprediksi,” J. Sains Komput. Inform., vol. 1, no. 1, pp. 24–36, 2017.

Undang-Undang, “UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 14 TAHUN 2017 REVISI TAHUN 2005 TENTANG GURU DAN DOSEN,” 2017.

K. Djoko, “Pedoman Beban Kerja Dosen dan Evaluasi Pelaksanaan Tridharma Perguruan Tinggi. Direktorat Jenderal Pendidikan Tinggi Departemen Pendidikan Nasional 2010,” p. 20, 2010.

P. Pangastuti, “Untuk Mengukur Tingkat Korelasi Prestasi Mahasiswa ( Studi Kasus Pada Universitas Dian Nuswantoro Semarang ),” 2014.

T. Riyanto, “Akuntabilitas Finansial dalam Pengelolaan Alokasi Dana Desa (ADD) di Kantor Desa Perangkat Selatan Kecamatan Marangkayu Kabupaten Kutai Kartenegara,” eJournal Adm. Negera, vol. 3, no. 1, pp. 119–130, 2015.

Agus Perdana Windarto, “Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, pp. 12–23, 2017.

A. P. Windarto, L. S. Dewi, and D. Hartama, “Implementation of Artificial Intelligence in Predicting the Value of Indonesian Oil and Gas Exports With BP Algorithm,” Int. J. Recent Trends Eng. Res., vol. 3, no. 10, pp. 1–12, 2017.

Z. A. Matodang, “Jaringan Syaraf Tiruan Dengan Algoritma Backpropagtion Untuk Penentuan Kelulusan Sidang Skripsi,” Pelita Inform. Budi Darma, vol. 4, no. 1, pp. 84–93, 2013.

Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA ( Studi kasus : Prediksi Prestasi Siswa SMAN 4 Ambon ),” J. Mat. Integr., vol. 11, no. 2, pp. 149–160, 2015.

N. M. Sukarno, P. W. Wirawan, and S. Adhy, “Perancangan dan implementasi jaringan saraf tiruan,” vol. 5, pp. 9–18, 2013.

L. Handayani and M. Adri, “Penerapan JST ( Backpropagation ) untuk Prediksi Curah Hujan ( Studi Kasus : Kota Pekanbaru ),” no. November, pp. 238–247, 2015.

M. R. Munandar, E. S. Astuti, and M. S. Hakam, “Pengaruh Keelamatan, Kesehatan Kerja (K3) dann Insentif terhadap Motivasi dan Kinerja Karyawan (Studi pada Pekerja Bagian Produksi PT. Sekawan Karyatama Mandiri Sidoarjo),” J. Adm. Bisnis, vol. 9, no. 1, pp. 1–9, 2014.

A. Wanto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform., vol. 2, no. 2, pp. 37–44, 2017.




DOI: http://dx.doi.org/10.30645/senaris.v1i0.65

Refbacks

  • There are currently no refbacks.


&nbsp