Penerapan Metode Naive Bayes dalam Menentukan Pengaruh Penasihat Akademik pada Kelulusan Mahasiswa Tingkat Akhir

Sakila Wulandari, Poningsih Poningsih, Widodo Saputra

Abstract


In the lecture there is a permanent lecturer who serves as an Academic Adviser namely a person whose job is to provide students with assistance in adjusting to lectures and assisting students in solving problems encountered during college by providing various alternatives for students. Students are required to have abilities and expertise. To achieve the objectives of final year students and also universities in graduating the best graduates, communication between students and lecturers is needed. Because it is very influential in training mentally students and is very helpful for students in completing their lectures. The influence of an academic advisor can actually be an important factor for final year students, but students may also consider it to have no effect on their graduation. So the Naive Bayes method, in order to find out whether Academic Advisers play an important role in the graduation of final year students, students are asked to fill out a questionnaire relating to the influence or not of the Academic Advisor on final graduation. It is hoped that this study can determine the effect or absence of Academic Advisers on the graduation of final year students, later the results of the output from this system can be an evaluation material for universities.

Full Text:

PDF

References


S. Haryati, A. Sudarsono, and E. Suryana, “Implementasi Data Mining untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5,” Jurnal Media Infotama, vol. 11, no. 2, pp. 130–138, 2015.

J. Anidar, “Peran penasehat akademik terhadap kesuksesan mahasiswa di perguruan tinggi,” pp. 216–224.

F. Kiki and A. P. Windarto, “DATA MINING : PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE ( DBD ) BERDASARKAN PROVINSI,” vol. 3, no. 2, pp. 173–178, 2018.

I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “Memanfaatkan Algoritma K-Means dalam Menentukan Pegawai yang Layak Mengikuti Asessment Center untuk Clustering Program SDP,” CESS (Journal of Computer Engineering System and Science), vol. 3, no. 1, pp. 87–93, 2018.

S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–8, 2018.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer dengan Metode K-Means (Study Kasus : Imunisasi Campak pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 224–230, 2018.

M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi dengan K-Means,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 311–319, 2018.

E. Manalu and F. A. S. M. R. Manalu, “PENERAPAN ALGORITMA NAIVE BAYES UNTUK MEMPREDIKSI JUMLAH PRODUKSI BARANG BERDASARKAN DATA PERSEDIAAN DAN JUMLAH PEMESANAN PADA CV . PAPADAN MAMA PASTRIES,” Jurnal Mantik Penusa, vol. 1, no. 2, 2017.

A. N. Putri, “PENERAPAN NAIVE BAYESIAN UNTUK PERANKINGAN KEGIATAN DI FAKULTAS TIK UNIVERSITAS SEMARANG,” Jurnal SIMETRIS, vol. 8, no. 2, pp. 603–610, 2017.

Y. N. Kunang and S. Murniati, “IMPLEMENTASI TEKNIK DATA MINING UNTUK MEMPREDIKSI TINGKAT KELULUSAN MAHASISWA PADA UNIVERSITAS BINA,” Seminar Nasional Informatika 2013, vol. 2013, no. semnasIF, pp. 56–63, 2013.




DOI: http://dx.doi.org/10.30645/senaris.v1i0.72

Refbacks

  • There are currently no refbacks.


&nbsp