Penerapan Algoritma K-Nearest Neighbor untuk Prediksi Kelulusan Siswa pada SMK Anak Bangsa

Sekar Rizkya Rani, Sundari Retno Andani, Dedi Suhendro

Abstract


Student graduation is very important for world education achievement, student graduation also influences the value of accreditation of an educational unit itself, therefor research on graduation prediction becomes a very interesting thing study, this study proposes the use of the K-Nearest Neighbor method to do predict student graduation at Anak Bangsa Private Vocational School. The result of the research is the value of k=5 with an accuracy rate of 93.55% which is determined as K-Optimal. The value of k=5 is applied to the K-NN algoritma to predict student graduation based on attendance, attitude, and value of knowledge.

Full Text:

PDF

References


U. F. Wiji setyaningsih, “DECISION SUPPORT SYSTEM PREDIKSI KELULUSAN SISWA SMK MENGGUNAKAN METODE NAIVE BAYES,” vol. 2, 2015.

Mustakim and G. O. F, “Algoritma K-Nearest Neighbor Classification,” vol. 13, no. 2, pp. 195–202, 2016.

R. I. Ndaumanu and M. R. Arief, Kusrini, “Analisis Prediksi Tingkat Pengunduran Diri Mahasiswa dengan Metode K-Nearest Neighbor,” Jatisi, vol. 1, no. 1, pp. 1–15, 2014.

Hasmawati, Nangi, Jumadil, and M. Muchtar, “Aplikasi Prediksi Penjualan Barang Menggunakan Metode K-Nearest Neighbor (Knn) (Studi Kasus Tumaka Mart),” semanTIK, vol. 3, no. 2, pp. 151–160, 2017.

N. N. Dzikrulloh and B. D. Setiawan, “Penerapan Metode K – Nearest Neighbor ( KNN ) dan Metode Weighted Product ( WP ) Dalam Penerimaan Calon Guru Dan Karyawan Tata Usaha Baru Berwawasan Teknologi ( Studi Kasus : Sekolah Menengah Kejuruan Muhammadiyah 2 Kediri ),” vol. 1, no. 5, pp. 378–385, 2017.

J. S. Informasi and F. Teknik, “Optimasi teknik klasifikasi modified k nearest neighbor menggunakan algoritma genetika,” no. September, pp. 130–134, 2014.




DOI: http://dx.doi.org/10.30645/senaris.v1i0.73

Refbacks

  • There are currently no refbacks.


&nbsp