Analisis Prediksi Curah Hujan Bulanan Wilayah Kota Sorong Menggunakan Metode Multiple Regression

Muhammad Yusuf(1*), Arief Setyanto(2), Komang Aryasa(3),

(1) Universitas Amikom Yogyakarta
(2) Universitas Amikom Yogyakarta
(3) Universitas Amikom Yogyakarta
(*) Corresponding Author

Abstract


Currently, climate change in Indonesia, which is a tropical region, is always uncertain and makes it difficult to predict weather conditions. Weather conditions can be influenced by temperature, air pressure, wind speed, humidity and rainfall. Rainfall is a climate parameter that has a high level of diversity due to climate anomalies. There are several factors that influence the characteristics of the diversity of rainfall, namely geographical, orographic, topographical, orientation and structure of the islands. These factors cause the distribution pattern of rainfall to be uneven between one area and another. For that we need a method that can solve the problem of predicting rainfall both daily, monthly and yearly. Prediction of rainfall with a statistical approach can be done through the Multiple Linear Regression method. Where in this study, rainfall is the dependent variable, while temperature and humidity are independent variables. The results obtained from the WEKA Application with a total of 60 data from 2017 to 2021, the correlation coefficient value is 0.8175, and from the evaluation results using Linear Regression, the MAE error rate is 78.8695 and the RMSE is 95.1982. It can be concluded that the effect of temperature and air on the occurrence of rainfall is 81.75%

Full Text:

PDF

References


B. Suma, “Implementasi Machine Learning Di Dalam Prediksi Cuaca Disusun sebagai salah satu syarat untuk kelulusan Program Strata 1 di Program Studi Teknik Informatika Universitas Pasundan Bandung oleh : BANDUNG SEPTEMBER 2020,” no. September 2020, 2021, doi: 10.13140/RG.2.2.16086.47680.

I. Jhonson Arizona Saragih et al., “Prediksi Curah Hujan Bulanan Di Deli Serdang Menggunakan Persamaan Regresi Dengan Prediktor Data Suhu Dan Kelembapan Udara,” J. Meteorol. Klimatologi dan Geofis., vol. 7, no. 2, pp. 6–14, 2020.

A. Fadholi, “Persamaan regresi prediksi curah hujan bulanan menggunakan data suhu dan kelembapan udara di Ternate,” J. Stat., vol. 13, no. 1, pp. 7–16, 2013.

R. Jati, “Banjir dan Longsor Kota Sorong Akibatkan Tiga Orang Meninggal Dunia,” 2020. [Online]. Available: https://bnpb.go.id/berita/Banjir dan Longsor Kota Sorong Akibatkan Tiga Orang Meninggal Dunia. [Accessed: 01-Jan-2022].

H. Muhamad, I. Cholissodin, and B. D. Setiawan, “Optimasi Support Vector Regression (SVR) Menggunakan Algoritma Improved-Particle Swarm Optimization (IPSO) untuk Peramalan Curah Hujan,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 11, pp. 2548–964, 2017.

N. Anusha, M. Sai Chaithanya, and G. Jithendranath Reddy, “Weather Prediction Using Multi Linear Regression Algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 590, no. 1, 2019, doi: 10.1088/1757-899X/590/1/012034.

A. Luthfiarta, A. Febriyanto, H. Lestiawan, and W. Wicaksono, “Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 10–17, 2020, doi: 10.33633/joins.v5i1.2760.

E. Dewi et al., “Prediksi Curah Hujan Di Kabupaten Majalengka Dengan Menggunakan Algoritma Regresi Rainfall Prediction in Majalengka District Using Regression Algorithm,” Inf. , vol. 67, no. 1, 2019.

M. Kafil, “Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso,” JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 2, pp. 59–66, 2019, doi: 10.36040/jati.v3i2.860.

S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz, “Rainfall prediction in Lahore City using data mining techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 254–260, 2018, doi: 10.14569/IJACSA.2018.090439.

S. Putramulyo and S. Alaa, “Prediksi Curah Hujan Bulanan Di Kota Samarinda Menggunakan Persamaan Regresi Dengan Prediktor Data Suhu dan Kelembapan Udara,” Eig. Math. J., vol. 2, no. 2, p. 13, 2018, doi: 10.29303/emj.v2i2.20.

N. Binternagel, “Adaptasi dan Mitigasi Perubahan Iklim Global,” no. October, 2009.

A. Ardhitama, “Simulasi Prakiraan Jumlah Curah Hujan Dengan Menggunakan Data Parameter Cuaca (Study Kasus Di Kota Pekanbaru Tahun 2012),” J. Sains Teknol. Modif. Cuaca, vol. 14, no. 2, p. 111, 2013, doi: 10.29122/jstmc.v14i2.2690.

D. Prakoso, “Analisis Pengaruh Tekanan Udara, Kelembaban Udara Dan Suhu Udara Terhadap Tingkat Curah Hujan Di Kota Semarang,” pp. 1–77, 2018.

Y. S. Swarinoto and S. Sugiyono, “Pemanfaatan Suhu Udara Dan Kelembapan Udara Dalam Persamaan Regresi Untuk Simulasi Prediksi Total Hujan Bulanan Di Bandar Lampung,” J. Meteorol. dan Geofis., vol. 12, no. 3, pp. 271–281, 2011, doi: 10.31172/jmg.v12i3.109.

P. S. A. Husaini Usman, Pengantar statistika, Ed. 2. Jakarta : Bumi Aksara, 2006., 2006.

Sudjana, Metode statistika. Bandung : Tarsito, 2002.

I. R. Rumahorbo, “Persamaan Regresi Prediksi Curah Hujan Bulanan Menggunakan Data Suhu dan Kelembapan Udara di Bengkulu,” Pros. Semin. Pendidik. Mat. dan …, vol. 2, no. 2721, pp. 1–11, 2020.

I. Russell and Z. Markov, “An Introduction to the Weka Data Mining System (Abstract Only),” vol. 18, no. 3, pp. 742–742, 2017, doi: 10.1145/3017680.3017821




DOI: http://dx.doi.org/10.30645/j-sakti.v6i1.455

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats