Prediksi Konsumsi Energi Pada Bangunan Menggunakan Metode Support Vector Machice Berbasis Algoritma Genetika
(1) Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri (STMIK Nusa Mandiri)
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Wu, L., Kaiser, G., Solomon, D., Winter, R., Boulanger, A., & Anderson, R. (2011). Improving Efficiency and Reliability of Building Systems Using Machine Learning and Automated Online Evaluation.
Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential buildin using statistical machine learning tools. Energy and Buildings, 560-567.
Xiang, Hai Zhao, frederic M. (2009). Parallel Support Vector Machines Applied to the Prediction of Multiple Buildings Energy Consumption, 4(2), 1–17.
Zhao, H., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592.
Yu, Z., Haghighat, F., Fung, B. C. M., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy and Buildings, 42(10), 1637–1646.
Ekonomou, L. (2010). Greek long-term energy consumption prediction using artificial neural networks. Energy, 35(2), 512–517. ScienceDirect.
Li, Q., Meng, Q., Cai, J., Yoshino, H., & Mochida, A. (2009). Applying support vector machine to predict hourly cooling load in the building. Applied Energy, 86(10).
Yu, Z., Haghighat, F., Fung, B. C. M., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy and Buildings, 42(10), 1637–1646.
Yuxia, H., & Hongtao, Z. (2012). Chaos Optimization Method of SVM Parameters Selection for Chaotic Time Series Forecasting. Physics Procedia, 25, 588–594.
Wang, S., & Meng, B. (2011). Parameter Selection Algorithm for Support Vector Machine. Procedia Environmental Sciences, 11, 538–544.
Huang, C.-L., & Wang, C.-J. (2006). A GA-based feature selection and parameters optimizationfor support vector machines. Expert Systems with Applications, 31(2).
Lin, S.-W., Chen, S.-C., Wu, W.-J., & Chen, C.-H. (2009). Parameter determination and feature selection for back-propagation network by particle swarm optimization. Knowledge and Information Systems, 21(2), 249–266.
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining Practical
Machine Learning Tools And Techniques. Burlington, Usa: Morgan
Kaufmann Publishers.
Santosa, Budi (2007). Data Mining: Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu
Zhao, H. (2011). New Parallel Support Vector Regression for Predicting Building Energy Consumption. IEEE Symposium Series on Computational Intelligence. Paris : Chatenay Malabry.
Larose, D. T. (2007). Data Mining Methods And Models. New Jersey: A John Wiley & Sons.
Berndtsson, Hansson, Olsson, & Lundell. (2008). Thesis Projects. A Guide For Students In Computer Science and Information Systems. London: Springer.
UCI (2012). Energy Efficiency. November 30. http://archive.ics.uci.edu/ml/machine-learningdatabase/00242/ENB2012_data.xlsx
Vercellis, C. (2009). Business Intelligence Data Mining And Optimization For Decision Making. United Kingdom: A John Wiley And Sons, Ltd.,Publication.
DOI: http://dx.doi.org/10.30645/jurasik.v2i1.14
DOI (PDF): http://dx.doi.org/10.30645/jurasik.v2i1.14.g11
Refbacks
- There are currently no refbacks.
JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By: