Deteksi Jenis Penyakit Dan Hama Pada Tanaman Jagung Menggunakan Arsitektur Spatial Pyramid Pooling Pada YOLOv5s
(1) Institut Shanti Bhuana, Indonesia
(2) Institut Shanti Bhuana, Indonesia
(3) Institut Shanti Bhuana, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Nurhidayati and I. Marzuki, “Deteksi Otomatis Penyakit Daun Jagung Menggunakan Teknik Klasterisasi Data dan Operasi Morfologi,” Energy-Jurnal Ilm. Ilmu-Ilmu Tek., vol. 10, no. 1, pp. 1–6, 2020, [Online]. Available: https://ejournal.upm.ac.id/index.php/energy/article/view/604%0Ahttps://ejournal.upm.ac.id/index.php/energy/article/download/604/603
I. Syahriani, C. Evelyn, D. Istiqomah, E. Noviyanti, H. Adila, and R. Putri, “Identifikasi Penyakit pada Batang Tanaman Jagung ( Zea Mays ) di Kecamatan Panyabungan Kabupaten Mandailing Natal, Sumatera Utara,” J. Biodjati, vol. 2, no. 2, pp. 325–332, 2021.
Y. Kang, N. Cho, J. Yoon, S. Park, and J. Kim, “Transfer learning of a deep learning model for exploring tourists’ urban image using geotagged photos,” ISPRS Int. J. Geo-Information, vol. 10, no. 3, 2021, doi: 10.3390/ijgi10030137.
K. Kristiawan, D. D. Somali, T. A. Linggan jaya, and A. Widjaja, “Deteksi Buah Menggunakan Supervised Learning dan Ekstraksi Fitur untuk Pemeriksa Harga,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, pp. 541–548, 2020, doi: 10.28932/jutisi.v6i3.3029.
K. A. Baihaqi and Y. Cahyana, “Application of Convolution Neural Network Algorithm for Rice Type Detection Using Yolo v3,” Systematics, vol. 3, no. 2, pp. 272–280, 2021.
S. S. Bhoomika and K. M. Poornima, “Plant Leaf Disease Detection and Classification Using Deep Learning Technique BT - Intelligent System Design,” 2023, pp. 73–83.
A. Etienne, A. Ahmad, V. Aggarwal, and D. Saraswat, “Deep learning-based object detection system for identifying weeds using uas imagery,” Remote Sens., vol. 13, no. 24, pp. 1–22, 2021, doi: 10.3390/rs13245182.
Z. Zhou, “Detection and Counting Method of Pigs Based on YOLOV5_Plus: A Combination of YOLOV5 and Attention Mechanism,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/7078670.
M. Mira, I. Sembiring, and H. D. Purnomo, “Implementasi Transfer Learning Pada Algoritma Convolutional Neural Network untuk Mengklasifikasikan Image Objek Wisata,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 209–216, 2022, doi: 10.47065/bits.v4i1.1764.
M. Dio, R. Pratama, B. Priyatna, S. Shofiah, and A. Lia, “Deteksi Objek Kecelakaan Pada Kendaraan Roda Empat Menggunakan Algoritma YOLOv5 Car Vehicle Accident Object Detection Using YOLOv5 Algorithm,” vol. 12, no. 2, pp. 15–24, 2022.
X. Zhang, W. Wang, Y. Zhao, and H. Xie, “An improved YOLOv3 model based on skipping connections and spatial pyramid pooling,” Syst. Sci. Control Eng., vol. 9, no. S1, pp. 142–149, 2021, doi: 10.1080/21642583.2020.1824132.
C. Dewi, R. C. Chen, and S. K. Tai, “Evaluation of robust spatial pyramid pooling based on convolutional neural network for traffic sign recognition system,” Electron., vol. 9, no. 6, 2020, doi: 10.3390/electronics9060889.
DOI: http://dx.doi.org/10.30645/jurasik.v8i2.630
DOI (PDF): http://dx.doi.org/10.30645/jurasik.v8i2.630.g603
Refbacks
- There are currently no refbacks.
JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By: