Model Comparison of Random Forest and Logistic Regression Algorithms in PCOS Disease Detection

Khoirun Nisa(1*), P Purwono(2), Bala Putra Dewa(3), Sony Kartika Wibisono(4),

(1) Universitas Harapan Bangsa, Purwokerto
(2) Universitas Harapan Bangsa, Purwokerto
(3) Universitas Harapan Bangsa, Purwokerto
(4) Universitas Harapan Bangsa, Purwokerto
(*) Corresponding Author

Abstract


PCOS or Polycystic Ovary Syndrome is a hormonal imbalance affecting egg cells' growth, making them remain small and not develop into large and mature egg cells to be fertilized by sperm cells. It is an endocrinopathy disease occurred in 10-15% of productive-aged women worldwide. The study aims to find the most suitable algorithm to be used in the optimization of PCOS detection. Thus, a performance comparison between random forest and logistic regression algorithms needs to be conducted in order to find the best performance in terms of accuracy. The research used a dataset containing 40 features. According to comparison results, the random forest algorithm was superior to logistic regression, with an accuracy of 91 %.

Full Text:

PDF

References


E. A. Greenwood, L. A. Pasch, K. Shinkai, M. I. Cedars, and H. G. Huddleston, “Clinical course of depression symptoms and predictors of enduring depression risk in women with polycystic ovary syndrome: Results of a longitudinal study,” Fertil. Steril., vol. 111, no. 1, pp. 147–156, 2019, doi: 10.1016/j.fertnstert.2018.10.004.

T. Vos, A. Flaxman, and M. Naghavi, “HHS Public Access Global Burden of Disease Study 2010,” Lancet, vol. 380, no. 9859, pp. 2163–2196, 2012, doi: 10.1016/S0140-6736(12)61729-2.Years.

M. O. Goodarzi, D. A. Dumesic, G. Chazenbalk, and R. Azziz, “Polycystic ovary syndrome: etiology, pathogenesis and diagnosis,” Nat. Rev. Endocrinol., pp. 219–231, 2011, doi: https://doi.org/10.1038/nrendo.2010.217.

M. A. Sanchez-Garrido and M. Tena-Sempere, “Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies,” Mol. Metab., vol. 35, no. February, p. 100937, 2020, doi: 10.1016/j.molmet.2020.01.001.

A. S. Laganà, S. G. Vitale, M. Noventa, and A. Vitagliano, “Current management of polycystic ovary syndrome: From bench to bedside,” Int. J. Endocrinol., vol. 2018, 2018, doi: 10.1155/2018/7234543.

Fitri Handayani, A. Fauzi, and A. Sihombing, “Penerapan Metode Certainty Factor dalam Mendiagnosa Penyakit Kanker Nasofaring,” J. Pharm. Heal. Res., vol. 6, no. 1, pp. 255–262, 2020, [Online]. Available: http://ejurnal.seminar-id.com/index.php/jharma/article/view/345%0Ahttp://ejurnal.seminar-id.com/index.php/jharma/article/download/345/215.

B. Purnama, U. N. Wisesti, Adiwijaya, F. Nhita, A. Gayatri, and T. Mutiah, “A classification of polycystic Ovary Syndrome based on follicle detection of ultrasound images,” 2015, doi: 10.1109/ICoICT.2015.7231458.

U. N. Wisesty, J. Nasri, and Adiwijaya, “Modified Backpropagation Algorithm for Polycystic Ovary Syndrome Detection Based on Ultrasound Images,” in Recent Advances on Soft Computing and Data Mining, 2017, pp. 141–151.

Yoga Religia, Agung Nugroho, and Wahyu Hadikristanto, “Klasifikasi Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 187–192, 2021, doi: 10.29207/resti.v5i1.2813.

P. Purwono, A. Wirasto, and K. Nisa, “Comparison of Machine Learning Algorithms for Classification of Drug Groups,” Sisfotenika, vol. 11, no. 2, p. 196, 2021, doi: 10.30700/jst.v11i2.1134.

A. Purnamawati, W. Nugroho, D. Putri, and W. F. Hidayat, “InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Attribution-NonCommercial 4.0 International. Some rights reserved Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVM dan KNN,” vol. 5, no. 1, 2020, [Online]. Available: https://doi.org/10.30743/infotekjar.v5i1.2934.

J. J. Pangaribuan, H. Tanjaya, and Kenichi3, “Mendeteksi Penyakit Jantung Menggunakan Machine Learning Dengan Algoritma Logistic Regression,” Inf. Syst. Dev., vol. 6, no. 2, 2021, [Online]. Available: https://books.google.ca/books?id=EoYBngEACAAJ&dq=mitchell+machine+learning+1997&hl=en&sa=X&ved=0ahUKEwiomdqfj8TkAhWGslkKHRCbAtoQ6AEIKjAA.

Erlin, Yulvia Nora Marlim, Junadhi, Laili Suryati, and Nova Agustina, “Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 88–96, 2022, doi: 10.22146/jnteti.v11i2.3586.

W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” Sistemasi, vol. 10, no. 1, p. 163, 2021, doi: 10.32520/stmsi.v10i1.1129.

I. H. Hassan, M. Abdullahi, M. M. Aliyu, S. A. Yusuf, and A. Abdulrahim, “An improved binary manta ray foraging optimization algorithm based feature selection and random forest classifier for network intrusion detection,” Intell. Syst. with Appl., vol. 16, no. August, p. 200114, 2022, doi: 10.1016/j.iswa.2022.200114.

T. M. Jawa, “Logistic regression analysis for studying the impact of home quarantine on psychological health during COVID-19 in Saudi Arabia,” Alexandria Eng. J., vol. 61, no. 10, pp. 7995–8005, 2022, doi: 10.1016/j.aej.2022.01.047.




DOI: https://doi.org/10.30645/kesatria.v4i1.119

DOI (PDF): https://doi.org/10.30645/kesatria.v4i1.119.g113

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: