Metode Adaptive Neuro-Fuzzy Inference System (ANFIS) Untuk Memprediksi Kelulusan Mahasiswa

F Fauziah(1*),

(1) Universitas Nasional, Indonesia
(*) Corresponding Author

Abstract


To assure the quality of graduates, it is required to estimate the graduation rate of active students based on variables that influence it, such as first-through-sixth-semester GPAs, the number of credits taken each semester, etc. Graduation rate is a criterion for evaluating the accreditation of study programs and institutions, making it one of the benchmarks for higher education management policies. In order to forecast student graduation rates, an artificial neural network algorithm based on the Adaptive Neuro-Fuzzy Inference System approach was used to analyze data in this study. This technique is commonly employed for problem prediction. In the implementation of this technique, the sample data consist of around 627 student data from the classes of 2015 through 2018. With the result that predicts the number of years and months till student graduation. Good accuracy results were obtained with the approach utilized, which included the kind of membership function, namely gauss mf, gbell mf, trim mf, and traf mf. On average, it provided a R value of 0.99 at epoch values between 50 and 500, an MSE value of 0.04, and an accuracy rate of 96.97%

Full Text:

PDF

References


Eko Prasetiyo Rohmawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree Dan Artificial Neural Network”, Jurnal Jurnal Ilmiah MATRIK Vol.20 No.1, Halaman 21-30, April 2018.

Hasnan Afif , Kusrini , M. Rudyanto Arief, “Prediksi Performa Mahasiswa Menggunakan Algoritma Naive Bayes Classifier”, Teknomatika Vol. 11, No. 2, Januari 2019

Utomo Budiyanto, Titin Fatimah, “Prediksi Kelulusan Tepat Waktu Mahasiswa Menggunakan Jaringan Syaraf Tiruan”, Seminar Nasional APTIKOM (SEMNASTIK) 2019.

Christin Nandari Dengen , Kusrini , Emha Taufiq Luthfi, “Implementasi Decision Tree Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu”, JURNAL SISFOTENIKA Vol. 10 No. 1, Januari 2020.

Martanto , Irfan Ali , Mulyawan, “Prediksi Tingkat Kelulusan Mahasiswa Menggunakan Machine Learning dengan Teknik Deep Learning”, Jurnal Informatika: Jurnal pengembangan IT (JPIT), Vol.04 No.2-2, 2019.

Ade Fatma Ayu Rahman1 , Sorikhi2 , Sri Wartulas3, “Prediksi Kelulusan Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus Di Universitas Peradaban)”, IJIR - Vol.1 No. 2 (2020): 70-77.

Musa Hendri Janto Rahanra, Kusrini , Emha Taufiq Luthfi, “Analisa Kelulusan Mahasiswa Teknik Informatika Tepat Waktu Menggunakan Algoritma Artificial Neural Network (ANN)”, JURNAL FATEKSA: Jurnal Teknologi dan Rekayasa, Volume 7, No 1 Juli 2022

Ni Putu Erika Sari Bintaria , I Ketut Gede Darma Putraa , I Made Sunia Raharjaa, “Komparasi Algoritma Naïve Bayes dan Neural Network untuk Menentukan Ketepatan Masa Studi Mahasiswa(Studi Kasus: Program Studi Teknologi Informasi Universitas Udayana)”, JITTER- Jurnal Ilmiah Teknologi dan Komputer Vol. 3, No. 2 Agustus 2022.

Daryanto , Rahma Wahyuningsih, Miftahur Rahman, “Penerapan Model Algoritma C4.5 dengan Tool Weka Untuk Memprediksi Kelulusan Mahasiswa”, Jurnal Sistem dan Teknologi Informasi, Volume 7, No. 2, Agustus 2022.

Nurul Khasanah , Agus Salim , Nurul Afni , Rachman Komarudin , Yana Iqbal Maulana, “Prediksi Kelulusan Mahasiswa Dengan Metode Naive Bayes”, Technologia”Vol 13, No. 3, Juli 2022.




DOI: https://doi.org/10.30645/kesatria.v4i1.121

DOI (PDF): https://doi.org/10.30645/kesatria.v4i1.121.g115

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: