Penerapan Metode Naïve Bayes Dalam Memprediksi Kepuasan Mahasiswa Terhadap Cara Pengajaran Dosen

Putri Ramadani(1*), Gunadi Widi Nurcahyo(2), Billy Hendrik(3),

(1) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(2) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(3) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(*) Corresponding Author

Abstract


Student satisfaction in higher education is the main focus in improving the quality of education. In the Tridharma paradigm, satisfaction is measured through a comparison of expectations and teaching realization as the main indicator of learning effectiveness. This research method uses Naïve Bayes classification, through the steps of reading training data, calculating prior probabilities, training data probabilities for each category, reading testing data, and calculating final probabilities. This research aims to evaluate student satisfaction with lecturers' teaching at the LP3I Polytechnic, Padang Campus. The data used in this research was 574. The results of research with 574 data (516 training and 58 testing) showed that 52 data (89.648%) stated "Very Satisfied", while 6 data (10.344%) stated "Satisfied". Prediction accuracy reached 98.28%. However, when using the Naïve Bayes method with 574 data (574 training and 574 testing), 397 data (69.078%) stated "Very Satisfied" and 177 data (30.798%) stated "Satisfied". Without the Naïve Bayes method, 402 data (69.948%) stated "Very Satisfied" and 172 data (29.928%) stated "Satisfied". An improvement of 0.87% occurred for the "Very Satisfied" category and -0.87% for "Satisfied". There are no differences in percentages for other categories. From the comparison of results, it can be seen that the Naïve Bayes method is superior in predicting student satisfaction levels compared to calculations without this method. Therefore, it can be concluded that the Naïve Bayes process model is suitable for use as a method for determining good decisions in predictions

Full Text:

PDF

References


Ihya, N. Abrar, A. Abdullah, And Sucipto, “Liver Disease Classification Using The Elbow Method To Determine Optimal K In The K-Nearest Neighbor (K-Nn) Algorithm,” Jurnal Sisfokom (Sistem Informasi Dan Komputer), Vol. 12, No. 2, Pp. 218–228, Jul. 2023, Doi: 10.32736/Sisfokom.V12i2.1643.

S. Wirma, “Data Mining Dengan Metode Naïves Bayes Classifer Dalam Memprediksi Tingkat Kepuasan Pelayanan Dokumen Kependudukan,” Jurnal Informatika Ekonomi Bisnis, Pp. 156–160, Sep. 2022, Doi: 10.37034/Infeb.V4i3.155.

D. F. Pratama, I. Zufria, And Triase, “Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar,” Rabit: Jurnal Teknologi Dan Sistem Informasi Univrab, Vol. 7, No. 1, Pp. 77–84, Jan. 2022, Doi: 10.36341/Rabit.V7i1.2217.

N. F. Ikhromr, S. Ipin, U. Faddillah, And B. Sudarsono, “Implementasi Data Mining Untuk Memprediksi Penyakit Diabetes Menggunakan Algoritma Naives Bayes Dan K-Nearest Neighbor Implementation Of Data Mining To Predict Diabetes Disease Using Naives Bayes And K-Nearest Neighbor Algorithms,” Journal Of Information Technology And Computer Science (Intecoms), Vol. 6, No. 1, Pp. 416–428, Jun. 2023, Doi: 10.31539/Intecoms.V6i1.5916.

Nurhachita And E. S. Negara, “A Comparison Between Deep Learning, Naïve Bayes And Random Forest For The Application Of Data Mining On The Admission Of New Students,” Iaes International Journal Of Artificial Intelligence, Vol. 10, No. 2, Pp. 324–331, Jun. 2021, Doi: 10.11591/Ijai.V10.I2.Pp324-331.

A. Triayudi And G. Soepriyono, “Penerapan Data Mining Untuk Mengukur Kepuasan Mahasiswa Terhadap Pembelajaran Dengan Menggunakan Algoritma Naïve Bayes,” Journal Of Computer System And Informatics (Josyc), Vol. 4, No. 1, Pp. 39–44, 2022, Doi: 10.47065/Josyc.V4i1.2524.

R. Hendra Tinambunan, J. Titaley, And C. E. Mongi, “Klasifikasi Naive Bayes Dalam Memprediksi Tingkat Kepuasan Mahasiswa Terhadap Pengajaran Dosen Di Program Studi Matematika Fmipa Universitas Sam Ratulangi Manado,” Prosiding Seminar Nasional Sains Dan Terapan (Sinta) Vi , 2022.

B. Purba And R. Syahputra, “Implementasi Metode Naive Bayes Classifier Pada Evaluasi Kepuasan Mahasiswa Terhadap Pembelajaran Daring,” Infotekjar : Jurnal Nasional Informatika Dan Teknologi Jaringan, Vol. 6, No. 1, Pp. 85–91, 2021, Doi: 10.30743/Infotekjar.V6i1.4352.

Z. A. Diekson, M. R. B. Prakoso, M. S. Q. Putra, M. S. A. F. Syaputra, S. Achmad, And R. Sutoyo, “Sentiment Analysis For Customer Review: Case Study Of Traveloka,” In Procedia Computer Science, Elsevier B.V., 2022, Pp. 682–690. Doi: 10.1016/J.Procs.2022.12.184.

T. M. Nitami And H. Februariyanti, “Analisis Sentimen Ulasan Ekspedisi J&T Express Menggunakan Algoritma Naive Bayes,” Jurnal Manajemen Informatika & Sistem Informasi (Misi), Vol. 5, No. 1, Pp. 20–29, Jan. 2022, Doi: 10.36595/Misi.V5i1.396.

A. R. Damanik, S. Sumijan, And G. W. Nurcahyo, “Prediksi Tingkat

Kepuasan Dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes,” Jurnal Sistim Informasi Dan Teknologi, Vol. 3, No. 3, Pp. 88–94, Aug. 2021, Doi: 10.37034/Jsisfotek.V3i3.49.

Y. Umaidah And U. Enri, “Prediction Of Public Service Satisfaction Using C4.5 And Naïve Bayes Algorithm,” Jurnal Pilar Nusa Mandiri, Vol. 17, No. 2, Pp. 143–148, Sep. 2021, Doi: 10.33480/Pilar.V17i2.2403.

E. R. Arumi, S. A. Subrata, And A. Rahmawati, “Implementation Of Naïve Bayes Method For Predictor Prevalence Level For Malnutrition Toddlers In Magelang City,” Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), Vol. 7, No. 2, Pp. 201–207, Mar. 2023, Doi: 10.29207/Resti.V7i2.4438




DOI: https://doi.org/10.30645/kesatria.v5i2.361

DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.361.g358

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: