Analisa Hasil Performansi Algoritma Apriori dan FP-Growth dalam Rekomendasi Kombinasi Menu

Maulana Hassan Sechuti(1), Yisti Vita Via(2*), Hendra Maulana(3),

(1) Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
(2) Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
(3) Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
(*) Corresponding Author

Abstract


Currently, technological developments are increasingly rapid with the emergence of various technologies that make it easier for humans to do their activities, for example in the food business sector. However, the development of technology has not been maximally utilized by several food business, one of which is the Sidoarjo area ropi bakery which has problems managing its stock and has difficulty in determining menu combinations for promotional activities. This can be overcome by analyzing all transaction data at the Sidoarjo area ropi bakery. Analysis of transaction patterns is carried out to obtain menu combinations. This analysis can be done using data mining association algorithms. This research focuses more on comparing the Apriori and FP-Growth data mining association algorithms when the two algorithms are implemented into a web-based information system. In this study, a comparison was made by analyzing 637 transaction data. In analyzing 637 transaction data, the minimum support value variation used is less then equal 10% with a minimum confidence value of 60%. The result of the analysis of the two algorithms when implemented into the information system are superior to the FP-Growth algorithm.

Full Text:

PDF

References


L. Laurentinus, “Data Mining Menggunakan Algoritma Apriori dalam Rekomendasi Produk Restoran,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 3, p. 351, Dec. 2021, doi: 10.26418/jp.v7i3.49606.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Edik Informatika, vol. 2, no. 2, pp. 213–219, Feb. 2017, doi: 10.22202/ei.2016.v2i2.1465.

S. Enggari and S. Defit, “Divorce Fact Detection Based on Internet User Behavior Using Hybrid Systems with Combination of Apriori Algorithm and K-Means Method,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 8, no. 1, pp. 8–17, Mar. 2022, doi: 10.23917/khif.v8i1.14036.

S. P. Tamba, A. W. Tan, Y. Gunawan, and A. Andreas, “Penerapan Data Mining Untuk Pembuatan Paket Promosi Penjualan Menggunakan Kombinasi Fp-Tree Dan Tid-List,” Jurnal Teknik Informasi dan Komputer (Tekinkom), vol. 4, no. 2, p. 201, Dec. 2021, doi: 10.37600/tekinkom.v4i2.309.

I. Muttaqin, “E-Library Berbasis Website Menggunakan Metode Algoritma Apriori Dan Sequential Search,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 2, pp. 1223–1232, Jun. 2022, doi: 10.35957/jatisi.v9i2.1909.

D. Renita, E. Dyar Wahyuni, and S. Fitri Ana Wati, “Implementasi Data Mining Pada Sistem Informasi Menggunakan Fp-Growth,” Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer, vol. 3, no. 3, Nov. 2023, doi: https://doi.org/10.55606/juisik.v3i3.620.

N. C. Dewi, F. Putrawansyah, and D. Puspita, “Implementasi Algoritma FP-Growth Pada E-Commerce Kopi Pagar Alam Menggunakan Framework Codeigniter,” Indonesian Journal of Computer Science, vol. 10, no. 2, pp. 447–458, Oct. 2021, doi: 10.33022/ijcs.v10i2.3012.

D. Yulianto, A. R. C. Baswara, L. Alhawariy, M. I. Prasasti, and G. A. Hariadi, “Development of Information and Management System of Student Competition Groups through User-Centered Design Approach,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 9, no. 1, Apr. 2023, doi: 10.23917/khif.v9i1.17974.

H. Malius, Apriyanto, and A. A. H. Dani, “Sistem Informasi Sekolah Berbasis Web Pada Sekolah Dasar Negeri (SDN) 109 SERITI,” Indonesian JournalOf Education And Humanity, vol. 1, pp. 156–168, Aug. 2021.

S. M. Pulungan, R. Febrianti, T. Lestari, N. Gurning, and N. Fitriana, “Analisis Teknik Entity-Relationship Diagram Dalam Perancangan Database,” Jurnal Ekonomi Manajemen dan Bisnis (JEMB), vol. 1, no. 2, pp. 98–102, Feb. 2023, doi: 10.47233/jemb.v1i2.533.




DOI: https://doi.org/10.30645/kesatria.v5i2.386

DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.386.g382

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: