Artificial Neural Networks Pengenalan Pola Pasword Angka Menggunakan Metode Heteroassociative Memory

S ` Silvilestari(1*),

(1) Akademi Manajemen Informatika dan Komputer, Kota Solok, Sumatra Barat, Indonesia
(*) Corresponding Author

Abstract


Every important data must be kept confidential so that it is not misused by people who do not have the right to access the data. Data security can be used using the Heteroassociative Memory Method. The Heteroassociative Method is used to collect data from each combination and then become a complex system so that it can be mapped into a system with the resulting values. The problem that often occurs is data security which is often stolen by unauthorized people because the data security key in the form of a numeric password can be hacked easily. The aim of the research is to help maintain data confidentiality by providing a password pattern lock on the system so that it is difficult for data thieves to enter the system. How the Heteroassociative Memory Method works uses weight values determined in such a way that the network can store groupings of patterns. Each group is a pair of vectors. The research results of 8 number patterns with input 1111 0110 1100 1000 0011 1100 1111 1011 produce 4 patterns that match the target, namely pattern 1 to pattern 4 and 4. Patterns that do not match the target, namely pattern 5 to pattern 8. Recognition of number patterns depends on the input target. .

Full Text:

PDF

References


A. Lius And E. R. Simarmata, “Pengembangan Aplikasi Pengenal Karakter Menggunakan Metode,” Vol. 1, No. 1, 2017.

H. T. B. Tambunan, D. Hartama, And I. Gunawan, “Implementasi Jaringan Saraf Tiruan (Jst) Untuk Memprediksi Jumlah Penjualan Gas 3kg Menggunakan Metode Backpropagation,” Tin Terap. Inform. Nusant., Vol. 1, No. 9, Pp. 479–488, 2021.

M. F. Mubarokh, M. Nasir, And D. Komalasari, “Jaringan Saraf Tiruan Untuk Memprediksi Penjualan Pakaian Menggunakan Algoritma Backpropagation,” J. Comput. Inf. Syst. Ampera, Vol. 1, No. 1, Pp. 29–43, 2020, Doi: 10.51519/Journalcisa.V1i1.3.

A. Vyan Martha, M. Hanafi, And A. Burhanuddin, “Implementasi Jaringan Saraf Tiruan (Jst) Untuk Mengenali Pola Tanda Tangan Dengan Metode Backpropagation,” J. Komtika (Komputasi Dan Inform., Vol. 3, No. 2, Pp. 51–57, 2020, Doi: 10.31603/Komtika.V3i2.3472.

S. N. Rizki, “Implementasi Jaringan Saraf Tiruan Menggunakan Metode Heteroassociative Memory Pada Kode Rahasia Menggunakan System Biner,” Vol. 8, No. 2, Pp. 191–195, 2023.

U. Mendiagnosa And P. Maag, “Analisis Metode Heteroassociative Memory,” Vol. 8, No. 2, Pp. 1–14, 2013.

Z. A. N. A. S. A. Muttaqin, “Penerapan Jaringan Saraf Tiruan Dan Certainty Factor Untuk Peramalan Penjualan Sepeda Motor,” Ris. Dan E-Jurnal Manaj. Inform. Komput., Vol. 7, Pp. 1523–1533, 2023.

F. Agus, Samuel Haryanto, D. Puspitaningrum, And Ernawati, “Untuk Memprediksi Cuaca ( Studi Kasus : Kota Bengkulu ),” Rekursif, Vol. 3, No. 2, Pp. 82–94, 2015.

L. Husna And S. Novia Rizki, “Pemanfaatan Jst Pengenalan Keaslian Pola Tanda Tangan Untuk Pencegahan Tindakan Pemalsuan Tanda Tangan,” J. Tek. Inf. Tika Unika , Vol. 08, No. 01, Pp. 2657–1501, 2023.

P. M. Putri, “Jaringan Saraf Tiruan Pengenalan Pola Karakter Kabataku Menggunakan Metode Bidirectional Associative Memory ( Bam ) Kontinu,” Vol. 9, No. 5, Pp. 1444–1449, 2022, Doi: 10.30865/Jurikom.V9i5.5016.

P. Studi And T. Informatika, “Penerapan Heteroassociative Memory Network Pada Sistem Pakar Diagnosa Penyakit Ikan Cupang,” Pp. 151–156.

M. D. Nugraha And C. Arif, “Pengembangan Model Jaringan Saraf Tiruan Untuk Menduga Fluks Gas N2o Dari Lahan Sawah,” J. Tek. Sipil Dan Lingkung., Vol. 4, No. 3, Pp. 233–242, 2019, Doi: 10.29244/Jsil.4.3.233-242.

S. Suhendar, A. Purnama, And E. Fauzi, “Deteksi Penyakit Pada Daun Tanaman Ubi Jalar Menggunakan Metode Convolutional Neural Network,” J. Ilm. Inform. Glob., Vol. 14, No. 3, Pp. 62–67, 2023, Doi: 10.36982/Jiig.V14i3.3478.

A. Jinan, B. H. Hayadi, And U. P. Utama, “Journal Of Computer And Engineering Science Volume 1, Nomor 2, April 2022 Klasifikasi Penyakit Tanaman Padi Mengunakan Metode Convolutional Neural Network Melalui Citra Daun (Multilayer Perceptron),” Vol. 1, No. April, Pp. 37–44, 2022.

S. M. Damanik, M. R. Lubis, W. Saputra, And I. Parlina, “Analisis Jaringan Saraf Tiruan Metode Backpropagation Dalam Memprediksi Ekspor Menurut Kelompok Barang Ekonomi Di Provinsi Sumatera Utara,” Komik (Konferensi Nas. Teknol. Inf. Dan Komputer), Vol. 4, Pp. 403–412, 2020, Doi: 10.30865/Komik.V4i1.2729.

M. Agustin And T. Prahasto, “Penggunaan Jaringan Saraf Tiruan Backpropagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer Di Politeknik Negeri Sriwijaya,” J. Sist. Inf. Bisnis, Vol. 2, No. 2, Pp. 89–97, 2012, Doi: 10.21456/Vol2iss2pp089-097.




DOI: https://doi.org/10.30645/kesatria.v5i3.409

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.409.g405

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: