Penerapan Algoritma Genetika Untuk Mencari Optimasi Kasus TSP Pada 20 Gerai Indomart

Yerika Puspa Rosanti(1*), Iwel Triana(2), Sigit Pancahayani(3),

(1) Institut Teknologi Bandung, Indonesia
(2) Institut Teknologi Bandung, Indonesia
(3) Institut Teknologi Bandung, Indonesia
(*) Corresponding Author

Abstract


In the delivery of a package, goods, and conducting business, location is a crucial factor to manage. A common issue is the late arrival of packages because delivery couriers cannot find the fastest or most efficient route. This study aims to apply a genetic algorithm to optimize the traveling salesman problem (TSP) for the distribution of goods to 20 Indomaret outlets in the Dago area of Bandung City. TSP is a classic optimization problem that seeks to find the shortest route that visits each city once and returns to the origin city. The genetic algorithm, as a population-based search and optimization method, is used due to its capability to find near-optimal solutions for complex and large problems. This algorithm leverages natural selection mechanisms such as selection, crossover, and mutation to develop solutions from one generation to the next. Initial parameters were set with a population of 100 and a maximum of 500 generations to increase the variety of solutions without taking too much time. The fitness value was obtained by taking the negative of the total distance traveled, and after the iteration process, an optimal result with a fitness value of -0.10 was achieved. It only took 50 seconds to run 500 generations for selecting the distribution route of 20 Indomaret outlets.

Full Text:

PDF

References


Gutin, G., Punen, A. P. “The Traveling Salesman Problem and Its Variations”, Springer Science and Business Media, 2006.

JianChen Zhang. “Comparison of various algorithms based on TSP Solving”, Journal of Physics: Conference Series, 2021.

Luailiyatuzzahrok. “Penggunaan Algoritma Genetika dalam Penyelesaian Masalah Traveling Salesman Problem pada Pendistribusian Tabung Liquified Petroleum Gas”. Skripsi Universitas Lampung, Indonesia, 2023.

Steeb, W. “The Nonlinear Workbook 5th Edition”, World Scientific Publishing Co. Pte. Ltd, USA, 2011.

Applegate, D. L., Chvatal, V., Bixby, R. E., Cook, W. J. “The Traveling Salesman Problem: A Computational Study”, Princeton University Press. USA, 2007.

Mubarok, Aldhiqo Y., dan Chotijah, U. “Penerapan Algoritma Genetika untuk Mencari Optimasi Kombinasi Jalur Terpendek dalam Kasus Travelling Salesman Problem”, Jurnal Teknologi Terpadu, Vol. 7, pp. 77-82, 2021.

Pesant, G., Gendreau, M., Potvin, J., Rousseau, J. “An Exact Constraint Logic Programming Algorithm for The Travelling Salesman Problem with Time Windows”, Transportation Science, Vol. 32, pp. 12-29, 1998.

Suryanto, M. H. “Sistem Operasional Manajemen Distribusi”, PT. Grasindo, Jakarta, 2016.

Ina, W. T., Manu, S. O., dan Matahhine, T. Y. “Penerapan Algoritma Genetika pada Travelling Salesman Problem (TSP) (Studi Kasus: Pedagang Perabot Keliling di Kota Kupang)”, Jurnal Media Elektro, Vol. 8, pp. 53-58, 2019.

Rohman, S., Zakaria, L., Asmiati, A., dan Nuryaman, A. “Optimisasi Travelling Salesman Problem dengan Algoritma Genetika pada Kasus Pendistribusian Barang PT. Pos Indonesia di Kota Bandar Lampung”, Jurnal Matematika Integratif, Vol. 16, pp.61-73.

Ramdhani, S., Mauliana, P., Wiguna, W., Hunaifi, N., dan Firmansyah, R. “Sistem Penjadwalan Antrian Service Mobil Toyota Menggunakan Algoritma Genetika di Auto2000 Pasteur”, Jurnal Infotronik, Vol. 7, pp. 1, 2022.




DOI: https://doi.org/10.30645/kesatria.v5i3.423

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.423.g419

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: