Implementasi Algoritma Komputasi Linear Regression untuk Optimasi Prediksi Hasil Pertanian

Irma Hakim(1*), A Asdi(2), Teuku Afriliansyah(3),

(1) Universitas Muhammadiyah Makassar, Makassar, Indonesia
(2) Universitas Muhammadiyah Makassar, Makassar, Indonesia
(3) Universitas Bumi Persada Lhokseumawe, Aceh, Indonesia
(*) Corresponding Author

Abstract


The main objective of this research is to implement the Linear Regression computational algorithm to predict crop yields more accurately. The research method includes collecting and analyzing historical data from 10 agricultural samples that include these variables. This data is then used to train a prediction model. The model evaluation used the Mean Squared Error (MSE) and R² score metrics to assess prediction accuracy. The research results show that the Linear Regression model can provide accurate predictions, with prediction results on new data reaching 479.5 kg/ha. Data visualization revealed a significant relationship between environmental variables and crop yields, which supports the validity of the model constructed. The conclusions of this research confirm that implementing computational algorithms can be an effective tool to help farmers make more informed decisions regarding planting times and land management strategies. This not only increases agricultural efficiency and productivity but also helps in reducing uncertainty in crop yields. The implementation of technology using the linear regression algorithm is expected to make a significant contribution to more sustainable and efficient agricultural practices, as well as support increased crop yields in the future.


Full Text:

PDF

References


Y. Kamakaula, ‘Optimasi Pertanian Berkelanjutan: Pengabdian Masyarakat Untuk Peningkatan Produktivitas Dan Kesejahteraan Petani Lokal’, Community Development Journal : Jurnal Pengabdian Masyarakat, vol. 4, no. 6, pp. 11463–11471, 2023, doi: 10.31004/cdj.v4i6.22461.

P. C. Pandey and M. Pandey, ‘Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals’, Sustainable Development, vol. 31, no. 5, pp. 3175–3195, 2023, doi: 10.1002/sd.2600.

R. Mrabet, Sustainable Agriculture and the Environment. Elsevier, 2023. doi: 10.1016/B978-0-323-90500-8.00013-0.

A. Sehgal et al., ‘Long-term crop rotation affects crop yield and economic returns in humid subtropical climate’, Field Crops Research, vol. 298, no. 1, p. 108952, 2023, doi: 10.1016/j.fcr.2023.108952.

D. S. Silva, E. Y. Arima, T. N. P. dos Reis, and L. Rattis, ‘Temperature e ff ect on Brazilian soybean yields , and farmers ’ responses’, International Journal of Agricultural Sustainability, vol. 21, no. 1, pp. 1–15, 2023, doi: 10.1080/14735903.2023.2173370.

Q. Wang, K. Huang, H. Liu, and Y. Yu, ‘Factors affecting crop production water

footprint: A review and meta-analysis’, Sustainable Production and Consumption, vol. 36, no. 3, pp. 207–216, 2023, doi: 10.1016/j.spc.2023.01.008.

S. Zhang et al., ‘Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis’, Journal of Environmental Management, vol. 345, no. 1, p. 118531, 2023, doi: 10.1016/j.jenvman.2023.118531.

J. Fu et al., ‘Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades’, nature food, vol. 4, pp. 416–426, 2023, doi: 10.1038/s43016-023-00753-6.

E. E. Rezaei et al., ‘Climate change impacts on crop yields’, nature reviews earth & environment, vol. 4, pp. 831–846, 2023, doi: 10.1038/s43017-023-00491-0.

A. B. Omotoso, S. Letsoalo, K. O. Olagunju, C. S. Tshwene, and A. O. Omotayo, ‘Climate change and variability in sub-Saharan Africa: A systematic review of trends and impacts on agriculture’, Journal of Cleaner Production, vol. 414, p. 137487, 2023, doi: 10.1016/j.jclepro.2023.137487.

B. Gwambene, E. Liwenga, and C. Mung’ong’o, ‘Climate Change and Variability Impacts on Agricultural Production and Food Security for the Smallholder Farmers in Rungwe, Tanzania’, Environmental Management, vol. 71, pp. 3–14, 2023, doi: 10.1007/s00267-022-01628-5.

J. Jiang and T. Zhou, ‘Agricultural drought over water-scarce Central Asia aggravated by internal climate variability’, Nature Geoscience, vol. 16, pp. 154–161, 2023, doi: 10.1038/s41561-022-01111-0.

G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, ‘Linear Regression. In: An Introduction to Statistical Learning’, in Springer Texts in Statistics ((STS)), Springer, Cham, 2023, pp. 69–70. doi: 10.1007/978-3-031-38747-0_3.

P. Singh et al., ‘Development of performance-based models for green concrete using multiple linear regression and artificial neural network’, International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 18, pp. 2945–2956, 2024, doi: 10.1007/s12008-023-01386-6.

S. Mohammadi, K. Rydgren, V. Bakkestuen, and M. A. K. Gillespie, ‘Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway’, Scientific Reports, vol. 13, p. 3633, 2023, doi: 10.1038/s41598-023-30813-7.

B. Faye et al., ‘Climate change impacts on European arable crop yields: Sensitivity to assumptions about rotations and residue management’, European Journal of Agronomy, vol. 142, p. 126670, 2023, doi: 10.1016/j.eja.2022.126670.

T. Hu et al., ‘Crop yield prediction via explainable AI and interpretable machine learning: Dangers of black box models for evaluating climate change impacts on crop yield’, Agricultural and Forest Meteorology, vol. 336, p. 109458, 2023, doi: 10.1016/j.agrformet.2023.109458.

N. Fiorentini, D. Pellegrini, and M. Losa, ‘Overfitting Prevention in Accident Prediction Models: Bayesian Regularization of Artificial Neural Networks’, Transportation Research Record, vol. 2677, no. 2, pp. 1455–1470, 2023, doi: 10.1177/03611981221111367.

S. Depaoli, S. D. Winter, and H. Liu, ‘Under-Fitting and Over-Fitting: The Performance of Bayesian Model Selection and Fit Indices in SEM’, Structural Equation Modeling: A Multidisciplinary Journal, vol. 31, no. 4, pp. 604–625, 2023, doi: 10.1080/10705511.2023.2280952.

M. Firman, M. Assidiq, and S. Syarli, ‘Sistem Prediksi Hasil Pertanian Durian Dengan Metode Regresi Linear Berganda’, Journal Peqguruang: Conference Series, vol. 5, no. 1, p. 350, 2023, doi: 10.35329/jp.v5i1.3199.

A. Satria, R. M. Badri, and I. Safitri, ‘Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning’, Digital Transformation Technology, vol. 3, no. 2, pp. 389–398, 2023, doi: 10.47709/digitech.v3i2.2852.

R. Andia, K. Kaslani, S. E. Permana, and T. Handayani, ‘Peramalan Hasil Panen Padi Kabupaten Cirebon Menggunakan Algoritma Regresi Linear Berganda’, JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 738–747, 2024, doi: 10.36040/jati.v8i1.8446.

I. Hamidah and M. P. Matematika, ‘Analisis Hasil Tanaman Perkebunan ( Kopi Dan Teh ) Menggunakan Regresi Linear’, ESTIMASI: Journal of Statistics and Its Application, vol. 5, no. 2, pp. 184–195, 2024, doi: 10.20956/ejsa.v5i2.26989.




DOI: https://doi.org/10.30645/kesatria.v5i3.460

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.460.g455

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: