Optimalisasi Database Mysql Pada Sistem Perancangan Sistem Housekeeping Transaction History Dengan Pentaho Data Integration

Yohanes Albryan Simanjuntak(1*), Alz Danny Wowor(2),

(1) Universitas Kristen Satya Wacana, Indonesia
(2) Universitas Kristen Satya Wacana, Indonesia
(*) Corresponding Author

Abstract


The volume of transaction data in the banking industry is growing with the increase in customers and transaction complexity. Ineffi-cient data management can lead to server overload, affect system performance, and hinder the delivery of fast, accurate services. Housekeeping processes are needed to move inactive data to sepa-rate storage, allowing the main server to function more efficiently. Pentaho Data Integration (PDI) offers an effective solution for man-aging the ETL (Extract, Transform, Load) process, which is crucial for data housekeeping. This research aims to optimize the manage-ment of banking transaction data using PDI to reduce server load and improve operational efficiency. This quantitative study applies an experimental method, with the ETL process managing Bank XYZ’s transaction data older than six months. The study uses trans-action data from Bank XYZ’s MySQL server, which will be trans-ferred to a data warehouse. The analysis applies clustering algo-rithms to filter and separate active from inactive transactions. The implementation of PDI for housekeeping effectively reduces server load and improves data management efficiency, significantly lower-ing processing time. The combined use of clustering algorithms and PDI delivers substantial improvements in managing banking transac-tion data, enhancing operational efficiency while significantly re-ducing the load on the main server

Full Text:

PDF

References


I. P. W. Prasetia and I. N. H. Kurniawan, “Implementasi ETL (Extract, Transform, Load) pada Data warehouse Penjualan Menggunakan Tools Pentaho,” TIERS Inf. Technol. J., vol. 2, no. 1, pp. 1–8, 2021, doi: 10.38043/tiers.v2i1.2844.

M. R. Hartani and I. B. M. Mahendra, “Implementasi Data Warehouse Menggunakan Pentaho BI di Hartaning House Homestay,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 10, no. 1, p. 153, 2021, doi: 10.24843/jlk.2021.v10.i01.p18.

W. P. N. Witjaksono, R Wahjoe., Wiyogo Mardiyanto., “Perancangan Aplikasi Business Intelligence Pada Sistem Informasi Distribusi PT Pertamina Lubricant Menggunakan Pentaho,” J. Rekayasa Sist. Ind., vol. 2, no. 2, pp. 12–18, 2015.

D. Putri, Pipit M., Gunawan, Syam., Shubuh, “Perancangan Data warehouse dan Penerapannya pada Sistem Informasi Penjualan Menggunakan Tools Pentahoo dan Tableau.,” J. Inform. Komputasi, vol. 12, no. 1, pp. 15–21, 2018.

A. Hidayat, Luky., Permanasari, Adhistya Erna., “Perancangan Data warehouse E-Procurement Pada Instansi Pemerintahan,” Semin. Nas. Inov. Dan Apl. Teknol. Di Ind., vol. 3, no. 1, pp. 31–36, 2017.

S. Darudiato, “Perancangan Data warehouse Penjualan untuk Mendukung Kebutuhan Informasi Eksekutif Cemerlang Skin Care,” Semin. Nas. Inform. 2010, pp. 350–359, 2010.

S. N. W. Sumartini and M. N. M. Lisma, “Extract Transform Loading Data Absensi STMIK STIKOM Indonesia Menggunakan Pentaho,” J. MATRIK, vol. 19, no. 2, pp. 273–281, 2020.

K. Syahputri, M. Irwan, and P. Nasution, “Peran Database Dalam Sistem Informasi Manajemen,” J. Akunt. Keuang. dan Bisnis, vol. 1, no. 2, pp. 54–58, 2023, [Online]. Available: https://jurnal.ittc.web.id/index.php/jakbs/article/view/36

P. A. Jusia, “Analisis komparasi pemodelan algoritma decision tree menggunakan metode particle swarm optimization dan metode adaboost untuk prediksi awal penyakit jantung.,” Semin. Nas. Sist. Inf., pp. 1048–1056, 2018.

S. S. Lubis and B. Hendrik, “Implementasi Data Mining Pengelompokan Data Penjualan Berdasarkan Pembelian Dengan Menggunakan Algoritma K-Means Pada UD.Martua,” J. Inf. Sysem Educ. Dev., vol. 1, no. 3, pp. 36–41, 2023, [Online]. Available: https://journal.widyakarya.ac.id/index.php/jusiik-widyakarya/article/view/1531%0Ahttps://journal.widyakarya.ac.id/index.php/jusiik-widyakarya/article/download/1531/1563

P. A. Jusia, “Face Recognition Menggunakan Metode Algoritma Viola Jones Dalam Penerapan Computer Vision.,” J. Ilm. Media Process., vol. 11, no. 1, pp. 663–675, 2016.

J. P. Jiawei Han, Micheline Kamber, “Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems),” 2011.

P. Alam Jusia, F. Muhammad Irfan, and S. Dinamika Bangsa Jambi Jl Jend Sudirman Thehok Jambi, “Clustering Data Untuk Rekomendasi Penentuan Jurusan Perguruan Tinggi Menggunakan Metode K-Means,” J. IKRA-ITH Inform., vol. 3, no. 3, p. 75, 2019.

F. Handayani, “Aplikasi Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar,” J. Teknol. dan Inf., vol. 12, no. 1, pp. 46–63, 2022, doi: 10.34010/jati.v12i1.6733.

B. K. Easterita, I. Arwani, and D. E. Ratnawati, “Pengembangan Data Warehouse dan Online Analytical Processing (OLAP) untuk Data Artikel pada Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK),” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Informasi, vol. 1, no. 1, pp. 12–22, 2020.

R. Abdul Ghani and R. Kurniawan, “Implementasi Extract, Transform, Load Process Pada Perancangan Data Warehouse Terkait Kualitas Pendidikan Di Kabupaten Serang,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2083–2090, 2024, doi: 10.36040/jati.v8i2.9081.

S. C. M. Souibgui, F. Atigui, S. Zammali and and S. Ben Yahia, “Data quality in ETL process: A preliminary study,” Procedia Comput, vol. 159, pp. 676–687, 2019.

J. A. O’Brien and G. M. Marakas, Management Information Systems. McGraw- Hill Education, 2016.

I. E. Gordon, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf, vol. 227, 2022.

T. Connolly and C. Begg, A Practical Approach to Design, Implementation, and Management. Pearson Education, 2014.




DOI: https://doi.org/10.30645/kesatria.v6i1.542

DOI (PDF): https://doi.org/10.30645/kesatria.v6i1.542.g537

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: