Penerapan Clustering dalam Mengelompokkan Jumlah Kunjungan Wisatawan Mancanegara Dengan Metode K-Means

Edy Satria, Heru Satria Tambunan, Ilham Syahputra Saragih, Irfan Sudahri Damanik, Fany Than Ervina Sitanggang

Abstract


The Indonesian tourism sector currently contributes approximately 4% of the total economy. In 2019, the Indonesian Government wants to increase this figure to double to 8% of PDB (Produk Domestik Bruto), a target that implies that within the next 4 years, the number of visitors needs to be doubled to approximately 20 million tourists. This study discusses the Application of Clustering in Grouping the Number of Foreign Tourist Visits by Nationality and Month of Arrival by the K-Means Method. The source of this research data was collected based on data on the number of foreign tourist visits produced by the National Statistics Agency. K-Means clustering is one of the data mining techniques that gives a description of an item's cluster. The purpose of this study is to classify the number of foreign tourists in Indonesia. The results of this study are grouping the number of foreign tourist visits grouped by two clusters (high and low), high clusters of 4 countries and low clusters of 87 countries. Countries that are included in the lower clusters can be used for the Government of Indonesia in terms of improving existing facilities in tourist attractions so that visiting tourists will increase in the future.

Full Text:

PDF

References


N.Hutasoit, “PENGARUH JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA DAN JUMLAH HUNIAN HOTEL TERHADAP PENERIMAAN SUB SEKTOR PDRB INDUSTRI PARIWISATA DI PROVINSI SUMATERA UTARA TAHUN2004-2013,” Mycol. Res., vol. 106, no. 11, pp. 1323–1330, 2017.

E. G. Sihombing, “Klasifikasi Data Mining Pada Rumah Tangga Menurut Provinsi Dan Status Kepemilikan Rumah Kontrak / Sewa Menggunakan K-Means Clustering Method,” vol. 2, no. 2, pp. 74–82, 2017.

L. Maulida, P. Studi, and M. Informatika, “KUNJUNGAN WISATAWAN KE OBJEK WISATA UNGGULAN DI PROV . DKI JAKARTA DENGAN K-MEANS,” vol. 2, no. 3, pp. 167–174, 2018.

M. G. Sadewo, A. P. Windarto, and D. Hartama, “Penerapan Datamining Pada Populasi Daging Ayam Ras Pedaging Di Indonesia Berdasarkan Provinsi Menggunakan K-Means,” InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan), vol. 2, no. 1, pp. 60–67, 2017.

A. P. Windarto, “Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method,” International Journal of artificial intelligence research, vol. 1, no. 2, pp. 26–33, 2017.

A. P. Windarto, “Penerapan Data Mining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering,” Techno.COM, vol. 16, no. 4, pp. 348–357, 2017.

M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi dengan K-Means,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 311–319, 2018.




DOI: http://dx.doi.org/10.30645/senaris.v1i0.52

Refbacks

  • There are currently no refbacks.


&nbsp