Memprediksi Faktor Tunggakan Uang Kuliah Menggunakan Metode Naive Bayes

Ledis Pebriani Purba, Dedy Hartama, Eka Irawan, Anjar Wanto

Abstract


Arrears of tuition will be a problem of the operational costs of private universities. In contrast to PTN (State Universities) which are assisted by the government while PTS (Private Universities) rely on tuition to carry out their activities. In carrying out the lecture process STIKOM Tunas Bangsa Students must carry out their obligations to pay tuition in a timely manner so there is no arrears in tuition. In this study, the method used to determine the factor of arrears of tuition is to use the Naive Bayes classification method. The parameters used are 6, namely C1 (Parent Income), C2 (Dependent Income), C3 (Parent Work), C4 (Residential Status), C5 (Money Abuse) and C6 (External Factor). The data used in this study were obtained by giving questionnaires to students of STIKOM Tunas Bangsa Pematangsiantar. Data training used 156 and testing data,and the most factors were external factors .It is expected that the results of this study can be used to help higher education institutions, especially STIKOM Tunas Bangsa education in knowing tuition arrears so that the best solution can be done to reduce the occurrence of tuition arrears.

Full Text:

PDF

References


S. Endriani, “ISSN 1412-1395 (cetak) 2355-3529 (elektronik),” vol. 15, pp. 70–75, 2015.

A. Saleh, “Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” no. January 2015, 2016.

A. P. Windarto, D. Hartama, and N. Dalimunthe, “Model Arsitektur Backpropogation Dalam Memprediksi Faktor Tunggakan Uang Kuliah (Studi Kasus AMIK Tunas Bangsa),” in Seminar Nasional Multidisiplin, 2017, pp. 1–9.

Y. sulistio Nugroho, “Penerapan Algoritma C4.5 untuk Klasifikasi Predikat Kelulusan Mahasiswa Fakultas Komunikasi dan Informatika Universitas Muhammadiyah Surakarta,” Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), no. November, pp. 1–6, 2014.

C. Fadlan, S. Ningsih, and A. P. Windarto, “PENERAPAN METODE NAÏVE BAYES DALAM KLASIFIKASI KELAYAKAN KELUARGA PENERIMA BERAS RASTRA,” JUTIM, vol. 3, no. 1, pp. 1–8, 2018.

I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “Memanfaatkan Algoritma K-Means dalam Menentukan Pegawai yang Layak Mengikuti Asessment Center untuk Clustering Program SDP,” CESS (Journal of Computer Engineering System and Science), vol. 3, no. 1, pp. 87–93, 2018.

M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi dengan K-Means,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 311–319, 2018.

S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–8, 2018.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer dengan Metode K-Means (Study Kasus : Imunisasi Campak pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 224–230, 2018.

T. Badan, J. Hb, and M. A. Posteriori, “Klasifikasi Naïve Bayes untuk Prediksi Kelahiran pada Data Ibu Hamil,” vol. 23, no. September, pp. 297–308, 2013.




DOI: http://dx.doi.org/10.30645/senaris.v1i0.35

Refbacks

  • There are currently no refbacks.


&nbsp