Implementasi Data Mining dalam Mengelompokkan Rumah Tangga Kumuh di Perkotaan Berdasarkan Provinsi Menggunakan Algoritma K-Means

Ranti Andini Margolang, Sundari Retno Andani, Muhammad Ridwan Lubis

Abstract


Slum is an area with a high population density levels in the city are generally inhabited by the poor and the unemployment rate is high, the slum also became a center of health problems because the conditions are not higenis. Slum slum household is is the home that do not have access to a source of drinking water, have no access to decent sanitation, have no access to floor area > = 7.2 m2 Per capita, and do not have access to conditions the roof, floor, and walls. This study used data sourced from the Central Bureau of statistics the year 2015 – 2016. The method used is Datamining the K-Means Clustering, Clustering is a method used in datamining the how it works find and classify data that has a semblance and characteristics of data between one another with the data. Using this algorithm the data already obtained can be grouped into Clusters based on this data. This data can be entered to the local Government to recommend to the Government so that the Government can handle the Spreader area development assistance to areas of slum households.

Full Text:

PDF

References


N. Noegroho, “PENATAAN HUNIAN KUMUH PERKOTAAN DI ATAS TANAH ULAYAT : STUDI KASUS PADA KOTA PAYAKUMBUH , SUMATERA BARAT Pemerintah dan Program Penataan Hunian Kumuh,” vol. 2, no. 2, pp. 618–626, 2011.

T. Septioko et al., “APLIKASI K-MEANS UNTUK PENGELOMPOKAN RUMAH TANGGA APLIKASI K-MEANS UNTUK PENGELOMPOKAN RUMAH TANGGA DI SALATIGA BERDASARKAN DATA SUSENAS 2011,” 2011.

F. Kiki and A. P. Windarto, “DATA MINING : PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE ( DBD ) BERDASARKAN PROVINSI,” vol. 3, no. 2, pp. 173–178, 2018.

I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “Memanfaatkan Algoritma K-Means dalam Menentukan Pegawai yang Layak Mengikuti Asessment Center untuk Clustering Program SDP,” CESS (Journal of Computer Engineering System and Science), vol. 3, no. 1, pp. 87–93, 2018.

S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–8, 2018.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer dengan Metode K-Means (Study Kasus : Imunisasi Campak pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 224–230, 2018.

M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi dengan K-Means,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 311–319, 2018.

H. Sulastri and A. I. Gufroni, “Jurnal Teknologi dan Sistem Informasi PENERAPAN DATA MINING DALAM PENGELOMPOKAN PENDERITA,” vol. 2, pp. 299–305, 2017.

E. G. Sihombing, “Klasifikasi Data Mining Pada Rumah Tangga Menurut Provinsi Dan Status Kepemilikan Rumah Kontrak / Sewa Menggunakan K-Means Clustering Method,” vol. 2, no. 2, pp. 74–82, 2017.




DOI: http://dx.doi.org/10.30645/senaris.v1i0.66

Refbacks

  • There are currently no refbacks.


&nbsp